These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 1331036)
1. Possible physiological roles of aspartase, NAD- and NADP-requiring glutamate dehydrogenases of Pseudomonas fluorescens. Miyamoto K; Katsuki H J Biochem; 1992 Jul; 112(1):52-6. PubMed ID: 1331036 [TBL] [Abstract][Full Text] [Related]
2. Inorganic nitrogen assimilation in yeasts: alteration in enzyme activities associated with changes in cultural conditions and growth phase. Thomulka KW; Moat AG J Bacteriol; 1972 Jan; 109(1):25-33. PubMed ID: 4400414 [TBL] [Abstract][Full Text] [Related]
3. [Regulation of aspartate-ammonia-lyase (aspartase) biosynthesis in Pseudomonas fluorescens]. Hubert JC; Wurtz B Biochimie; 1976; 58(11-12):1329-36. PubMed ID: 828061 [TBL] [Abstract][Full Text] [Related]
4. Occurrence of thermolabile and regulatory NAD-linked glutamate dehydrogenase in Pseudomonas fluorescens. Tokushige M; Miyamoto K; Katsuki H J Biochem; 1979 Jun; 85(6):1415-20. PubMed ID: 37248 [TBL] [Abstract][Full Text] [Related]
5. Glutamate dehydrogenase and glutamine synthetase are regulated in response to nitrogen availability in Myocbacterium smegmatis. Harper CJ; Hayward D; Kidd M; Wiid I; van Helden P BMC Microbiol; 2010 May; 10():138. PubMed ID: 20459763 [TBL] [Abstract][Full Text] [Related]
7. [Role of fumarase in the induction of aspartate-ammonium lyase of Pseudomonas fluorescens]. Hubert JC; Hornsperger JM; Wurtz B C R Acad Hebd Seances Acad Sci D; 1975 Jun; 280(24):2797-9. PubMed ID: 808318 [TBL] [Abstract][Full Text] [Related]
8. AMINO GROUP FORMATION AND GLUTAMATE SYNTHESIS IN STREPTOCOCCUS BOVIS. BURCHALL JJ; NIEDERMAN RA; WOLIN MJ J Bacteriol; 1964 Oct; 88(4):1038-44. PubMed ID: 14219016 [TBL] [Abstract][Full Text] [Related]
9. Mutations affecting the synthesis of NADP-dependent glutamate dehydrogenase in Pseudomonas aeruginosa. Joannou CL; Brown PR; Tata R J Gen Microbiol; 1988 Feb; 134(2):441-52. PubMed ID: 2844962 [TBL] [Abstract][Full Text] [Related]
10. Regulation by ammonium of glutamate dehydrogenase (NADP+) from Saccharomyces cerevisiae. Bogonez E; Satrústegui J; Machado A J Gen Microbiol; 1985 Jun; 131(6):1425-32. PubMed ID: 2995545 [TBL] [Abstract][Full Text] [Related]
11. Glutamate dehydrogenases in the oleaginous yeast Yarrowia lipolytica. Trotter PJ; Juco K; Le HT; Nelson K; Tamayo LI; Nicaud JM; Park YK Yeast; 2020 Jan; 37(1):103-115. PubMed ID: 31119792 [TBL] [Abstract][Full Text] [Related]
12. Regulation of glutamate dehydrogenases during morphogenesis of Schizophyllum commune. Dennen DW; Niederpruem DJ J Bacteriol; 1967 Mar; 93(3):904-13. PubMed ID: 4381636 [TBL] [Abstract][Full Text] [Related]
13. Purification, crystallization, and molecular properties of aspartase from Pseudomonas fluorescens. Takagi JS; Fukunaga R; Tokushige M; Katsuki H J Biochem; 1984 Aug; 96(2):545-52. PubMed ID: 6438071 [TBL] [Abstract][Full Text] [Related]
14. The Antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD+-dependent enzyme. Camardella L; Di Fraia R; Antignani A; Ciardiello MA; di Prisco G; Coleman JK; Buchon L; Guespin J; Russell NJ Comp Biochem Physiol A Mol Integr Physiol; 2002 Mar; 131(3):559-67. PubMed ID: 11867281 [TBL] [Abstract][Full Text] [Related]
15. A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. Miñambres B; Olivera ER; Jensen RA; Luengo JM J Biol Chem; 2000 Dec; 275(50):39529-42. PubMed ID: 10924516 [TBL] [Abstract][Full Text] [Related]
16. NADP+-dependent glutamate dehydrogenase in the Antarctic psychrotolerant bacterium Psychrobacter sp. TAD1. Characterization, protein and DNA sequence, and relationship to other glutamate dehydrogenases. Di Fraia R; Wilquet V; Ciardiello MA; Carratore V; Antignani A; Camardella L; Glansdorff N; Di Prisco G Eur J Biochem; 2000 Jan; 267(1):121-31. PubMed ID: 10601858 [TBL] [Abstract][Full Text] [Related]
17. The mechanisms of nitrogen assimilation in pseudomonads. Brown CM; Macdonald-Brown DS; Stanley SO Antonie Van Leeuwenhoek; 1973; 39(1):89-98. PubMed ID: 4144177 [No Abstract] [Full Text] [Related]
18. A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain. Middelhoven WJ; van Eijk J; van Renesse R; Blijham JM Antonie Van Leeuwenhoek; 1978; 44(3-4):311-20. PubMed ID: 222204 [TBL] [Abstract][Full Text] [Related]
19. Gene cloning and characterization of the very large NAD-dependent l-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum, isolated from cold soil. Kawakami R; Sakuraba H; Ohshima T J Bacteriol; 2007 Aug; 189(15):5626-33. PubMed ID: 17526698 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenases of Saccharomyces cerevisiae. Roon RJ; Even HL J Bacteriol; 1973 Oct; 116(1):367-72. PubMed ID: 4147647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]