These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 13311651)

  • 1. [Metabolism of citrate in coliform bacteria. II. Study of the function and significance of citric acid metabolism in E. coli and Aerobacter aerogenes].
    BIFFI-GENTILI G; LAMANNA A; PASQUINELLI F
    Sperimentale; 1955 Oct; 105(1-6):27-34. PubMed ID: 13311651
    [No Abstract]   [Full Text] [Related]  

  • 2. Dissimilation of citric acid by Aerobacter aerogenes and Escherichia coli.
    DAGLEY S
    J Gen Microbiol; 1954 Oct; 11(2):218-27. PubMed ID: 13211977
    [No Abstract]   [Full Text] [Related]  

  • 3. [Citrate metabolism in colonic bacteria. I. Citrate oxidation in E. coli, in A.aerogenes and in the intemediates].
    BIFFI-GENTILI G; LAMANNA A; PASQUINELLI F
    Sperimentale; 1954 Dec; 104(11-12):293-302. PubMed ID: 13274181
    [No Abstract]   [Full Text] [Related]  

  • 4. A mechanism for citrate dissimilation.
    DAGLEY S; DAWES EA
    Nature; 1955 Mar; 175(4456):550-1. PubMed ID: 14370164
    [No Abstract]   [Full Text] [Related]  

  • 5. Dissimilation of citric acid by extracts of Aerobacter aerogenes.
    DAGLEY S; DAWES EA
    Biochem J; 1953 Jul; 55(320th Meeting):xvi. PubMed ID: 13093695
    [No Abstract]   [Full Text] [Related]  

  • 6. Inactivation of analogues of folic acid by certain non-exacting bacteria.
    WEBB M
    Biochim Biophys Acta; 1955 Jun; 17(2):212-25. PubMed ID: 13239661
    [No Abstract]   [Full Text] [Related]  

  • 7. Critic acid metabolism of Aerobacter aerogenes.
    DAGLEY S; DAWES EA
    J Bacteriol; 1953 Sep; 66(3):259-65. PubMed ID: 13096472
    [No Abstract]   [Full Text] [Related]  

  • 8. [Research on the citrate metabolism of Escherichia coli].
    BIFFI-GENTILI G; LAMANNA A; PASQUINELLI F
    Nuovi Ann Ig Microbiol; 1955; 6(4):270-2. PubMed ID: 13288908
    [No Abstract]   [Full Text] [Related]  

  • 9. Diaminopimelic acid decarboxylase in cells and extracts of Escherichia coli and Aerobacter aerogenes.
    DEWEY DL; HOARE DS; WORK E
    Biochem J; 1954 Dec; 58(4):523-31. PubMed ID: 13229999
    [No Abstract]   [Full Text] [Related]  

  • 10. The distribution of polysaccharide production in Aerobacter and Escherichia strains and its relation to antigenic character; with a note on the influence of potassium deficiency upon production of polysaccharide by Aerobacter aerogenes.
    WILKINSON JF; DUGUID JP; EDMUNDS PN
    J Gen Microbiol; 1954 Aug; 11(1):59-72. PubMed ID: 13192303
    [No Abstract]   [Full Text] [Related]  

  • 11. The distribution of diaminopimelic acid decarboxylase among some organisms of the coli-aerogenes group and certain other bacteria.
    DEWEY DL
    J Gen Microbiol; 1954 Oct; 11(2):307-12. PubMed ID: 13211986
    [No Abstract]   [Full Text] [Related]  

  • 12. 1-(o-Carboxyphenylamino)-1-deoxyribulose. A compound formed by mutant strains of Aerobacter aerogenes and Escherichia coli blocked in the biosynthesis of tryptophan.
    DOY CH; GIBSON F
    Biochem J; 1959 Aug; 72(4):586-97. PubMed ID: 13817923
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the mechanism of acetate oxidation by bacteria. VI. Comparative patterns of acetate oxidation by citrate-grown and acetate-grown Aerobacter aerogenes.
    AJL SJ
    J Gen Physiol; 1951 Sep; 35(1):119-27. PubMed ID: 14873924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the tricarboxylic acid cycle in acetate oxidation in Escherichia coli.
    DAVIS BD; GILVARG C
    J Biol Chem; 1956 Sep; 222(1):307-19. PubMed ID: 13367004
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on the mechanism of acetate oxidation by bacteria. IV. Acetate oxidation by citrate-grown Aerobacter aerogenes studied with radioactive carbon.
    AJL SJ; WONG DT
    J Bacteriol; 1951 Apr; 61(4):379-87. PubMed ID: 14832175
    [No Abstract]   [Full Text] [Related]  

  • 16. THE ABSOLUTE STEREOCHEMICAL COURSE OF CITRIC ACID BIOSYNTHESIS.
    HANSON KR; ROSE IA
    Proc Natl Acad Sci U S A; 1963 Nov; 50(5):981-8. PubMed ID: 14082366
    [No Abstract]   [Full Text] [Related]  

  • 17. The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria.
    PINSENT J
    Biochem J; 1954 May; 57(1):10-6. PubMed ID: 13159942
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies on the mechanism of acquiring citric-acid-utilizing capacity in Escherichia coli.
    SAYAMA E; FUKUMI H
    Jpn J Med Sci Biol; 1954 Jun; 7(3):275-86. PubMed ID: 13211110
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation mechanisms in the biosynthesis of alpha-acetolactic acid by Aerobacter aerogenes.
    UMBARGER HE; HALPERN YS
    Bull Res Counc Isr Sect E Exp Med; 1959 Oct; 8E():34-5. PubMed ID: 13855170
    [No Abstract]   [Full Text] [Related]  

  • 20. [Sulfur metabolism in biochemically different strains of Coli aerogenes group under aerobic and anaerobic conditions].
    TANNERT S
    Biochem Z; 1954; 325(4):313-20. PubMed ID: 13172230
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 24.