BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 1331318)

  • 21. Staggered development of GABAergic and glycinergic transmission in the MNTB.
    Awatramani GB; Turecek R; Trussell LO
    J Neurophysiol; 2005 Feb; 93(2):819-28. PubMed ID: 15456797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of GABAergic synaptic connections in vivo and in cultures from the rat superior colliculus.
    Warton SS; Perouansky M; Grantyn R
    Brain Res Dev Brain Res; 1990 Mar; 52(1-2):95-111. PubMed ID: 2331803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Chronic treatment with GABA A receptor blockers increases efficacy of GABAergic synaptic transmission in rat hippocampal neuron cultures].
    Ivanova SIu; Kostiuk PH
    Fiziol Zh (1994); 2004; 50(4):10-5. PubMed ID: 15460022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Possible role of mitochondria in posttetanic potentiation of GABAergic synaptic transmission in rat neocortical cell cultures.
    Storozhuk MV; Ivanova SY; Balaban PM; Kostyuk PG
    Synapse; 2005 Oct; 58(1):45-52. PubMed ID: 16037952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission.
    Patenaude C; Chapman CA; Bertrand S; Congar P; Lacaille JC
    J Physiol; 2003 Nov; 553(Pt 1):155-67. PubMed ID: 12963794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exposure to interferon-gamma during synaptogenesis increases inhibitory activity after a latent period in cultured rat hippocampal neurons.
    Brask J; Kristensson K; Hill RH
    Eur J Neurosci; 2004 Jun; 19(12):3193-201. PubMed ID: 15217375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic NMDA exposure accelerates development of GABAergic inhibition in the superior colliculus.
    Aamodt SM; Shi J; Colonnese MT; Veras W; Constantine-Paton M
    J Neurophysiol; 2000 Mar; 83(3):1580-91. PubMed ID: 10712481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postsynaptic receptor occupancy during evoked transmission at striatal GABAergic synapses in vitro.
    Rumpel E; Behrends JC
    J Neurophysiol; 2000 Aug; 84(2):771-9. PubMed ID: 10938304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of functional GABAergic synapses formed between rat hypothalamic neurons and pituitary intermediate lobe cells in coculture: Ca2+ dependence of spontaneous IPSCs.
    Poisbeau P; René F; Egles C; Félix JM; Feltz P; Schlichter R
    J Neurosci; 1996 Aug; 16(16):4835-45. PubMed ID: 8756416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GABA-mediated synaptic transmission in neuroendocrine cells: a patch-clamp study in a pituitary slice preparation.
    Schneggenburger R; Konnerth A
    Pflugers Arch; 1992 Jul; 421(4):364-73. PubMed ID: 1329020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large amplitude variability of GABAergic IPSCs in melanotropes from Xenopus laevis: evidence that quantal size differs between synapses.
    Borst JG; Lodder JC; Kits KS
    J Neurophysiol; 1994 Feb; 71(2):639-55. PubMed ID: 8176432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between presynaptic calcium transients and postsynaptic currents at single gamma-aminobutyric acid (GABA)ergic boutons.
    Kirischuk S; Veselovsky N; Grantyn R
    Proc Natl Acad Sci U S A; 1999 Jun; 96(13):7520-5. PubMed ID: 10377447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in quantal size distributions upon experimental variations in the probability of release at striatal inhibitory synapses.
    Behrends JC; ten Bruggencate G
    J Neurophysiol; 1998 Jun; 79(6):2999-3011. PubMed ID: 9636103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual deprivation increases accumulation of dense core vesicles in developing optic tectal synapses in Xenopus laevis.
    Li J; Cline HT
    J Comp Neurol; 2010 Jun; 518(12):2365-81. PubMed ID: 20437533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures.
    Kirischuk S; Clements JD; Grantyn R
    J Physiol; 2002 Aug; 543(Pt 1):99-116. PubMed ID: 12181284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inter-bouton variability of synaptic strength correlates with heterogeneity of presynaptic Ca(2+) signals.
    Kirischuk S; Grantyn R
    J Neurophysiol; 2002 Oct; 88(4):2172-6. PubMed ID: 12364541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identity of a pathway for saccadic suppression.
    Lee PH; Sooksawate T; Yanagawa Y; Isa K; Isa T; Hall WC
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6824-7. PubMed ID: 17420449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Characteristics of quantal release of glutamate and GABA in synapses between retinal ganglion cells and superior colliculus neurons in coculture].
    Dumans'ka HV; Rykhal's'kyĭ OV; Veselovs'kyĭ MS
    Fiziol Zh (1994); 2014; 60(1):3-10. PubMed ID: 24809168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intraterminal Ca2+ concentration and asynchronous transmitter release at single GABAergic boutons in rat collicular cultures.
    Kirischuk S; Grantyn R
    J Physiol; 2003 May; 548(Pt 3):753-64. PubMed ID: 12640015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures.
    Storozhuk MV; Ivanova SY; Pivneva TA; Melnick IV; Skibo GG; Belan PV; Kostyuk PG
    Neurosci Lett; 2002 Apr; 323(1):5-8. PubMed ID: 11911977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.