BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 1331467)

  • 1. Volume-dependent regulation of sodium and potassium fluxes in cultured vascular smooth muscle cells: dependence on medium osmolality and regulation by signalling systems.
    Orlov SN; Resink TJ; Bernhardt J; Buhler FR
    J Membr Biol; 1992 Aug; 129(2):199-210. PubMed ID: 1331467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bumetanide-sensitive ion fluxes in vascular smooth muscle cells: lack of functional Na+, K+, 2 Cl- cotransport.
    Orlov SN; Tremblay J; Hamet P
    J Membr Biol; 1996 Sep; 153(2):125-35. PubMed ID: 8703202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)-K+ pump and Na(+)-K+ co-transport in cultured vascular smooth muscle cells from spontaneously hypertensive and normotensive rats: baseline activity and regulation.
    Orlov SN; Resink TJ; Bernhardt J; Bühler FR
    J Hypertens; 1992 Aug; 10(8):733-40. PubMed ID: 1325504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swelling-induced activation of Na+,K+,2Cl- cotransport in C6 glioma cells: kinetic properties and intracellular signalling mechanisms.
    Mongin AA; Aksentsev SL; Orlov SN; Kvacheva ZB; Mezen NI; Fedulov AS; Konev SV
    Biochim Biophys Acta; 1996 Dec; 1285(2):229-36. PubMed ID: 8972707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell volume in vascular smooth muscle is regulated by bumetanide-sensitive ion transport.
    Orlov SN; Tremblay J; Hamet P
    Am J Physiol; 1996 May; 270(5 Pt 1):C1388-97. PubMed ID: 8967439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered beta-adrenergic regulation of Na-K-Cl cotransport in cultured smooth muscle cells from the aorta of spontaneously hypertensive rats. Role of the cytoskeleton network.
    Orlov SN; Tremblay J; Hamet P
    Am J Hypertens; 1995 Jul; 8(7):739-47. PubMed ID: 7546501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Na+,K+,2Cl-cotransport system in HeLa cells: aspects of its physiological regulation.
    Kort JJ; Koch G
    J Cell Physiol; 1990 Nov; 145(2):253-61. PubMed ID: 2174063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha1-adrenergic activation of myocardial Na-K-2Cl cotransport involving mitogen-activated protein kinase.
    Andersen GO; Enger M; Thoresen GH; Skomedal T; Osnes JB
    Am J Physiol; 1998 Aug; 275(2):H641-52. PubMed ID: 9683454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of cation transport of vascular smooth muscle cells in a high glucose concentration milieu.
    Kuriyama S; Tokudome G; Tomonari H; Utsunomiya Y; Matsui K; Hashimoto T; Sakai O
    Diabetes Res Clin Pract; 1994 Jun; 24(2):77-84. PubMed ID: 7956712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory interaction of ATP Na+ and Cl- in the turnover cycle of the NaK2Cl cotransporter.
    Whisenant N; Khademazad M; Muallem S
    J Gen Physiol; 1993 Jun; 101(6):889-908. PubMed ID: 8392531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Na-K-2Cl cotransport in osteoblasts.
    Whisenant N; Zhang BX; Khademazad M; Loessberg P; Muallem S
    Am J Physiol; 1991 Sep; 261(3 Pt 1):C433-40. PubMed ID: 1716050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-dependent regulation of cation transport in cultured human nonpigmented ciliary epithelial cells.
    Mito T; Delamere NA; Coca-Prados M
    Am J Physiol; 1993 Mar; 264(3 Pt 1):C519-26. PubMed ID: 8384781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of Ca2+ and protein tyrosine kinase in insulin action on cell volume via Na+ and K+ channels and Na+/K+/2Cl- cotransporter in fetal rat alveolar type II pneumocyte.
    Marunaka Y; Niisato N; O'Brodovich H; Post M; Tanswell AK
    J Membr Biol; 1999 Mar; 168(1):91-101. PubMed ID: 10051692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Na-K-Cl cotransport in vascular endothelial cell volume regulation.
    O'Donnell ME
    Am J Physiol; 1993 May; 264(5 Pt 1):C1316-26. PubMed ID: 8498488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of Na-K-Cl cotransport in airway smooth muscle.
    Rhoden KJ; Douglas JS
    Am J Physiol; 1995 Apr; 268(4 Pt 1):L551-7. PubMed ID: 7733297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 22Na+ and 86Rb+ transport in vascular smooth muscle of SHR, Wistar Kyoto, and Wistar rats.
    Kuriyama S; Denny TN; Aviv A
    J Cardiovasc Pharmacol; 1988 Jun; 11(6):722-9. PubMed ID: 2457769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+/H+ exchange in vascular smooth muscle cells is controlled by GTP-binding proteins.
    Orlov SN; Aksentsev SL; Pokudin NI; Tremblay J; Hamet P
    Hypertension; 1998 Jan; 31(1 Pt 2):259-65. PubMed ID: 9453313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of active Na-K transport on protein kinase C activation in cultured ciliary epithelium.
    Mito T; Delamere NA
    Invest Ophthalmol Vis Sci; 1993 Mar; 34(3):539-46. PubMed ID: 8383643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelin stimulates Na(+)-K(+)-ATPase activity by a protein kinase C-dependent pathway in rabbit aorta.
    Gupta S; Ruderman NB; Cragoe EJ; Sussman I
    Am J Physiol; 1991 Jul; 261(1 Pt 2):H38-45. PubMed ID: 1650145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+, K+, Cl- cotransport and its regulation in Ehrlich ascites tumor cells. Ca2+/calmodulin and protein kinase C dependent pathways.
    Jensen BS; Jessen F; Hoffmann EK
    J Membr Biol; 1993 Feb; 131(3):161-78. PubMed ID: 8492304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.