These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 13315336)

  • 21. The utilization of D-glutamic acid by Lactobacillus arabinosus 175.
    CAMIEN MN; DUNN MS
    J Biol Chem; 1949 Jun; 179(2):935-41. PubMed ID: 18150024
    [No Abstract]   [Full Text] [Related]  

  • 22. Stimulation by fatty acids of amino acid accumulation in pantothenic acid depleted Lactobacillus plantarum.
    Holden JT; Bunch JM
    Biochem Biophys Res Commun; 1972 Jan; 46(2):437-42. PubMed ID: 5057885
    [No Abstract]   [Full Text] [Related]  

  • 23. [On the metabolism of amino acids by lactic acid bacteria isolated from wine (author's transl)].
    Weiller HG; Radler F
    Z Lebensm Unters Forsch; 1976; 161(3):259-66. PubMed ID: 973463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The gamma-aminobutyric acid and glutamic acid content of brains of rats treated with toxopyrimidine.
    RINDI G; FERRARI G
    Nature; 1959 Feb; 183(4661):608-9. PubMed ID: 13632808
    [No Abstract]   [Full Text] [Related]  

  • 25. [Inability of thyroid function to modify the gamma-aminobutyric acid and glutamic acid contents in the rat brain].
    RINDI G; VENTURA U
    Arch Fisiol; 1961 Sep; 60():349-54. PubMed ID: 14492337
    [No Abstract]   [Full Text] [Related]  

  • 26. Biochemical studies on psychotropic drugs-I. The effect of psychotropic drugs on gamma-aminobutyric acid and glutamic acid in brain tissue.
    ERNSTING MJ; KAFOE WF; NAUTA WT; OOSTERHUIS HK; de WAART
    J Neurochem; 1960 Feb; 5():121-7. PubMed ID: 13820684
    [No Abstract]   [Full Text] [Related]  

  • 27. Impact of chemical components of organic wastes on L(+)-lactic acid production.
    Ohkouchi Y; Inoue Y
    Bioresour Technol; 2007 Feb; 98(3):546-53. PubMed ID: 16546378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of D-glutamic acid by Lactobacillus arabinosus: glutamic racemase.
    AYENGAR P; ROBERTS E
    J Biol Chem; 1952 May; 197(1):453-60. PubMed ID: 12981075
    [No Abstract]   [Full Text] [Related]  

  • 29. Comparative physiological studies on four species of hemoflagellates in culture. II. Effect of carbohydrates and related substances and some amino compounds on the respiration.
    ZELEDON R
    J Parasitol; 1960 Oct; 46():541-51. PubMed ID: 13788134
    [No Abstract]   [Full Text] [Related]  

  • 30. Antagonisms in the utilization of d-amino acids by lactic acid bacteria. IV. d-Aspartic acid.
    CAMIEN MN
    J Biol Chem; 1952 May; 197(2):687-93. PubMed ID: 12981100
    [No Abstract]   [Full Text] [Related]  

  • 31. Interaction of amino acid dependent and independent strains of lactic acid bacteria.
    HOLDEN JT
    J Bacteriol; 1957 Mar; 73(3):436-41. PubMed ID: 13416208
    [No Abstract]   [Full Text] [Related]  

  • 32. The isolation of components from the cell wall of Lactobacillus casei.
    KNOX KW; BRANDSEN J
    Biochem J; 1962 Oct; 85(1):15-23. PubMed ID: 14033865
    [No Abstract]   [Full Text] [Related]  

  • 33. The assimilation of amino acids by bacteria. 18. The incorporation of glutamic acid into the protein fraction of Staphylococcus aureus.
    GALE EF; FOLKES JP
    Biochem J; 1953 Dec; 55(5):721-9. PubMed ID: 13115363
    [No Abstract]   [Full Text] [Related]  

  • 34. Fate of deutero-labeled carbamyl glutamate in citrulline biosynthesis.
    GRISOLIA S; BURRIS RH; COHEN PP
    J Biol Chem; 1954 Oct; 210(2):761-4. PubMed ID: 13211614
    [No Abstract]   [Full Text] [Related]  

  • 35. Response of lactic acid bacteria to amino acid derivatives. 5. L-, DL- and D-valic acids.
    CAMIEN MN; DUNN MS
    Proc Soc Exp Biol Med; 1960 Dec; 105():681-5. PubMed ID: 13690139
    [No Abstract]   [Full Text] [Related]  

  • 36. Amino acid and protein metabolism of the brain. IV. The metabolism of glutamic acid.
    LAJTHA A; BERL S; WAELSCH H
    J Neurochem; 1959 Feb; 3(4):322-32. PubMed ID: 13642066
    [No Abstract]   [Full Text] [Related]  

  • 37. Stimulation of glutamate uptake in vitamin B6-deficient L. arabinosus by acetate, NH4+, vitamin B6 and high buffer tonicity.
    HOLDEN JT
    Biochim Biophys Acta; 1959 Jun; 33(2):581-2. PubMed ID: 13670941
    [No Abstract]   [Full Text] [Related]  

  • 38. Antimutagenicity and binding of lactic acid bacteria from a Chinese cheese to mutagenic pyrolyzates.
    Zhang XB; Ohta Y; Hosono A
    J Dairy Sci; 1990 Oct; 73(10):2702-10. PubMed ID: 1980923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a glutamic acid racemase in Lactobacillus arabinosus.
    NARROD SA; WOOD WA
    Arch Biochem Biophys; 1952 Feb; 35(2):462-3. PubMed ID: 14924668
    [No Abstract]   [Full Text] [Related]  

  • 40. Heterogeneous elevation of amino acid transport rates in pantothenate-and lipid-deficient Lactobacillus plantarum.
    Holden JT; Easton JA; Bunch JM
    Biochim Biophys Acta; 1975 Apr; 382(4):657-60. PubMed ID: 1125249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.