BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1331758)

  • 1. In vivo evidence of hydroxyl radical formation after acute copper and ascorbic acid intake: electron spin resonance spin-trapping investigation.
    Kadiiska MB; Hanna PM; Hernandez L; Mason RP
    Mol Pharmacol; 1992 Oct; 42(4):723-9. PubMed ID: 1331758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo ESR spin trapping evidence for hydroxyl radical-mediated toxicity of paraquat and copper in rats.
    Kadiiska MB; Hanna PM; Mason RP
    Toxicol Appl Pharmacol; 1993 Dec; 123(2):187-92. PubMed ID: 8248925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo copper-mediated free radical production: an ESR spin-trapping study.
    Kadiiska MB; Mason RP
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Apr; 58(6):1227-39. PubMed ID: 11993471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron spin resonance spin-trapping investigation into the effects of paraquat and desferrioxamine on hydroxyl radical generation during acute iron poisoning.
    Burkitt MJ; Kadiiska MB; Hanna PM; Jordan SJ; Mason RP
    Mol Pharmacol; 1993 Feb; 43(2):257-63. PubMed ID: 8381512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron spin resonance evidence for free radical generation in copper-treated vitamin E- and selenium-deficient rats: in vivo spin-trapping investigation.
    Kadiiska MB; Hanna PM; Jordan SJ; Mason RP
    Mol Pharmacol; 1993 Jul; 44(1):222-7. PubMed ID: 8393522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel protocol to identify and quantify all spin trapped free radicals from in vitro/in vivo interaction of HO(.-) and DMSO: LC/ESR, LC/MS, and dual spin trapping combinations.
    Yue Qian S; Kadiiska MB; Guo Q; Mason RP
    Free Radic Biol Med; 2005 Jan; 38(1):125-35. PubMed ID: 15589381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of free radical formation and F2-isoprostanes in vivo by acute Cr(VI) poisoning.
    Kadiiska MB; Morrow JD; Awad JA; Roberts LJ; Mason RP
    Chem Res Toxicol; 1998 Dec; 11(12):1516-20. PubMed ID: 9860496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study.
    Gunther MR; Hanna PM; Mason RP; Cohen MS
    Arch Biochem Biophys; 1995 Jan; 316(1):515-22. PubMed ID: 7840659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of copper(II)-N-polycarboxylate complexes with hydrogen peroxide in the presence of biological reductants: ESR evidence for the formation of hydroxyl radical.
    Ozawa T; Hanaki A; Onodera K; Kasai M
    Biochem Int; 1992 Mar; 26(3):477-83. PubMed ID: 1320883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron supplementation generates hydroxyl radical in vivo. An ESR spin-trapping investigation.
    Kadiiska MB; Burkitt MJ; Xiang QH; Mason RP
    J Clin Invest; 1995 Sep; 96(3):1653-7. PubMed ID: 7657835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of ethanol to 1-hydroxyethyl radicals in vivo: detection with intravenous administration of alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone.
    Moore DR; Reinke LA; McCay PB
    Mol Pharmacol; 1995 Jun; 47(6):1224-30. PubMed ID: 7603464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of carbon tetrachloride to trichloromethyl radical: An ESR and HPLC-EC study.
    Stoyanovsky DA; Cederbaum AI
    Chem Res Toxicol; 1999 Aug; 12(8):730-6. PubMed ID: 10458707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper(II)-albumin complex can activate hydrogen peroxide in the presence of biological reductants: first ESR evidence for the formation of hydroxyl radical.
    Ozawa T; Ueda J; Hanaki A
    Biochem Mol Biol Int; 1993 Feb; 29(2):247-53. PubMed ID: 8388292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radical metabolism of halothane in vivo: radical adducts detected in bile.
    Knecht KT; DeGray JA; Mason RP
    Mol Pharmacol; 1992 May; 41(5):943-9. PubMed ID: 1317002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The line asymmetry of electron spin resonance spectra as a tool to determine the cis:trans ratio for spin-trapping adducts of chiral pyrrolines N-oxides: the mechanism of formation of hydroxyl radical adducts of EMPO, DEPMPO, and DIPPMPO in the ischemic-reperfused rat liver.
    Culcasi M; Rockenbauer A; Mercier A; Clément JL; Pietri S
    Free Radic Biol Med; 2006 May; 40(9):1524-38. PubMed ID: 16632113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR spin-trapping evidence for the direct, one-electron reduction of tert-butylhydroperoxide to the tert-butoxyl radical by copper(II): paradigm for a previously overlooked reaction in the initiation of lipid peroxidation.
    Jones CM; Burkitt MJ
    J Am Chem Soc; 2003 Jun; 125(23):6946-54. PubMed ID: 12783547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo detection of free radicals induced by diethylnitrosamine in rat liver tissue.
    Yamada K; Yamamiya I; Utsumi H
    Free Radic Biol Med; 2006 Jun; 40(11):2040-6. PubMed ID: 16716904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload: an ESR spin-trapping investigation.
    Burkitt MJ; Mason RP
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8440-4. PubMed ID: 1656444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ESR identification of free radicals formed from the oxidation of catechol estrogens by Cu2+.
    Seacat AM; Kuppusamy P; Zweier JL; Yager JD
    Arch Biochem Biophys; 1997 Nov; 347(1):45-52. PubMed ID: 9344463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.