BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1331809)

  • 1. Calcium-dependent immediate feedback control of inositol 1,4,5-triphosphate-induced Ca2+ release.
    Iino M; Endo M
    Nature; 1992 Nov; 360(6399):76-8. PubMed ID: 1331809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-induced Ca2+ oscillations through the regulation of the inositol 1,4,5-trisphosphate-gated Ca2+ channel: an allosteric model.
    Laurent M; Claret M
    J Theor Biol; 1997 Jun; 186(3):307-26. PubMed ID: 9219669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory and spatial aspects of inositol trisphosphate-mediated calcium signals.
    Horne JH
    Cell Biochem Biophys; 1999; 30(2):267-86. PubMed ID: 10356645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast kinetics of calcium liberation induced in Xenopus oocytes by photoreleased inositol trisphosphate.
    Parker I; Yao Y; Ilyin V
    Biophys J; 1996 Jan; 70(1):222-37. PubMed ID: 8770200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of Ca2+ release evoked by photolysis of caged InsP3 in rat submandibular cells.
    Takeo T; Suga S; Wu J; Dobashi Y; Kanno T; Wakui M
    J Cell Physiol; 1998 Mar; 174(3):387-97. PubMed ID: 9462701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between inositol 1,4,5-trisphosphate receptor isoforms and subcellular Ca2+ signaling patterns in nonpigmented ciliary epithelia.
    Hirata K; Nathanson MH; Burgstahler AD; Okazaki K; Mattei E; Sears ML
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2046-53. PubMed ID: 10440260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inositol trisphosphate receptor and Ca2+ signalling.
    Mikoshiba K; Furuichi T; Miyawaki A; Yoshikawa S; Nakagawa T; Yamada N; Hamanaka Y; Fujino I; Michikawa T; Ryo Y
    Philos Trans R Soc Lond B Biol Sci; 1993 Jun; 340(1293):345-9. PubMed ID: 8103938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of calcium spiking frequency in pituitary gonadotrophs by a single-pool cytoplasmic oscillator.
    Stojilkovic SS; Tomic M; Kukuljan M; Catt KJ
    Mol Pharmacol; 1994 May; 45(5):1013-21. PubMed ID: 8190091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of cytosolic Ca2+ concentration after photolytic release of 1-D-myo-inositol 1,4-bisphosphate 5-phosphorothioate from a caged derivative in guinea pig hepatocytes.
    Wootton JF; Corrie JE; Capiod T; Feeney J; Trentham DR; Ogden DC
    Biophys J; 1995 Jun; 68(6):2601-7. PubMed ID: 7647263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback control of inositol trisphosphate signalling bycalcium.
    Iino M; Tsukioka M
    Mol Cell Endocrinol; 1994 Jan; 98(2):141-6. PubMed ID: 8143923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of inositol trisphosphate-induced calcium release mechanism during maturation of hamster oocytes.
    Fujiwara T; Nakada K; Shirakawa H; Miyazaki S
    Dev Biol; 1993 Mar; 156(1):69-79. PubMed ID: 8383620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inositol 1,4,5-trisphosphate receptor isoforms show similar Ca2+ release kinetics.
    Dyer JL; Michelangeli F
    Cell Calcium; 2001 Oct; 30(4):245-50. PubMed ID: 11587548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism mediating regenerative intercellular Ca2+ waves in the blowfly salivary gland.
    Zimmermann B; Walz B
    EMBO J; 1999 Jun; 18(12):3222-31. PubMed ID: 10369663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression.
    Li W; Llopis J; Whitney M; Zlokarnik G; Tsien RY
    Nature; 1998 Apr; 392(6679):936-41. PubMed ID: 9582076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of muscarinic cationic current in myocytes from guinea-pig ileum by intracellular Ca2+ release: a central role of inositol 1,4,5-trisphosphate receptors.
    Gordienko DV; Zholos AV
    Cell Calcium; 2004 Nov; 36(5):367-86. PubMed ID: 15451621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs.
    Miyazaki S; Shirakawa H; Nakada K; Honda Y
    Dev Biol; 1993 Jul; 158(1):62-78. PubMed ID: 8392472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular and functional diversity of inositol triphosphate-induced Ca(2+) release].
    De Smedt H; Parys JB
    Verh K Acad Geneeskd Belg; 1995; 57(5):423-58. PubMed ID: 8571671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channel-dependent Ca2+ signalling in rat portal vein myocytes.
    Boittin FX; Coussin F; Macrez N; Mironneau C; Mironneau J
    Cell Calcium; 1998 May; 23(5):303-11. PubMed ID: 9681193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glutathione on inositol 1,4,5-triphosphate-induced Ca2+ release in permeabilized hepatocytes from control and chronic ethanol-fed rats.
    Nomura T; Higashi K; Hoshino M; Saso K; Itou M; Hoek JB
    Alcohol Clin Exp Res; 1996 Dec; 20(9 Suppl):325A-329A. PubMed ID: 8986231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca2+ in guinea-pig isolated hepatocytes.
    Ogden DC; Capiod T; Walker JW; Trentham DR
    J Physiol; 1990 Mar; 422():585-602. PubMed ID: 2161925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.