These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1331866)

  • 1. Electrophysiological localization of distinct calcium potentials at selective somatodendritic sites in the substantia nigra.
    Hounsgaard J; Nedergaard S; Greenfield SA
    Neuroscience; 1992 Oct; 50(3):513-8. PubMed ID: 1331866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-populations of pars compacta neurons in the substantia nigra: the significance of qualitatively and quantitatively distinct conductances.
    Nedergaard S; Greenfield SA
    Neuroscience; 1992; 48(2):423-37. PubMed ID: 1603327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological evidence for the dendritic localization of a calcium conductance in guinea-pig substantia nigra neurones in vitro.
    Harris NC; Ramsay S; Kelion A; Greenfield SA
    Exp Brain Res; 1989; 74(2):411-6. PubMed ID: 2924860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic heterogeneity of substantia nigra neurons: diversity in intrinsic membrane properties and synaptic inputs.
    Hajós M; Greenfield SA
    Neuroscience; 1993 Aug; 55(4):919-34. PubMed ID: 7901802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation of a dendritic calcium conductance by 5-hydroxytryptamine in the substantia nigra.
    Nedergaard S; Bolam JP; Greenfield SA
    Nature; 1988 May; 333(6169):174-7. PubMed ID: 2897080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiology of pars compacta cells in the in vitro substantia nigra--a possible mechanism for dendritic release.
    Llinás R; Greenfield SA; Jahnsen H
    Brain Res; 1984 Feb; 294(1):127-32. PubMed ID: 6697228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro.
    Yung WH; Häusser MA; Jack JJ
    J Physiol; 1991 May; 436():643-67. PubMed ID: 2061849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--2. Action potential generating mechanisms and morphological correlates.
    Grace AA; Bunney BS
    Neuroscience; 1983 Oct; 10(2):317-31. PubMed ID: 6633864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones.
    Nedergaard S; Flatman JA; Engberg I
    J Physiol; 1993 Jul; 466():727-47. PubMed ID: 8410714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Na+ spike generation in dendrites of guinea-pig substantia nigra pars compacta neurons.
    Nedergaard S; Hounsgaard J
    Neuroscience; 1996 Jul; 73(2):381-96. PubMed ID: 8783256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynaptic nicotinic receptors on dopaminergic neurons in the substantia nigra pars compacta of the rat.
    Sorenson EM; Shiroyama T; Kitai ST
    Neuroscience; 1998 Dec; 87(3):659-73. PubMed ID: 9758232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents.
    Harris NC; Webb C; Greenfield SA
    Neuroscience; 1989; 31(2):355-62. PubMed ID: 2552348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons.
    Engel D; Seutin V
    J Physiol; 2015 Nov; 593(22):4905-22. PubMed ID: 26350173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra.
    Moukhles H; Bosler O; Bolam JP; Vallée A; Umbriaco D; Geffard M; Doucet G
    Neuroscience; 1997 Feb; 76(4):1159-71. PubMed ID: 9027876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal selectivity of ATP-sensitive potassium channels in guinea-pig substantia nigra revealed by responses to anoxia.
    Murphy KP; Greenfield SA
    J Physiol; 1992; 453():167-83. PubMed ID: 1464828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata.
    Yanovsky Y; Zhang W; Misgeld U
    Neuroscience; 2005; 136(4):1027-36. PubMed ID: 16203104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The substantia nigra of the rat: a Golgi study.
    Juraska JM; Wilson CJ; Groves PM
    J Comp Neurol; 1977 Apr; 172(4):585-600. PubMed ID: 65369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two types of neurons in the substantia nigra pars compacta studied in a slice preparation.
    Matsuda Y; Fujimura K; Yoshida S
    Neurosci Res; 1987 Dec; 5(2):172-9. PubMed ID: 3431756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological Determinants of Cell-to-Cell Variations in Action Potential Dynamics in Substantia Nigra Dopaminergic Neurons.
    Moubarak E; Inglebert Y; Tell F; Goaillard JM
    J Neurosci; 2022 Oct; 42(40):7530-7546. PubMed ID: 36658458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta.
    Lacey MG; Mercuri NB; North RA
    J Physiol; 1987 Nov; 392():397-416. PubMed ID: 2451725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.