BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 1331975)

  • 1. Tetrandrine blocks a slow, large-conductance, Ca(2+)-activated potassium channel besides inhibiting a non-inactivating Ca2+ current in isolated nerve terminals of the rat neurohypophysis.
    Wang G; Lemos JR
    Pflugers Arch; 1992 Sep; 421(6):558-65. PubMed ID: 1331975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of effects of tetrandrine on ionic channels of isolated rat neurohypophysial terminals and Y1 mouse adrenocortical tumor cells.
    Wang G; Jiang MX; Coyne MD; Lemos JR
    Zhongguo Yao Li Xue Bao; 1993 Mar; 14(2):101-6. PubMed ID: 7688927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel large-conductance Ca(2+)-activated potassium channel and current in nerve terminals of the rat neurohypophysis.
    Wang G; Thorn P; Lemos JR
    J Physiol; 1992 Nov; 457():47-74. PubMed ID: 1284313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of tetrandrine-induced inhibition of large-conductance calcium-activated potassium channels in a human endothelial cell line (HUV-EC-C).
    Wu SN; Li HF; Lo YC
    J Pharmacol Exp Ther; 2000 Jan; 292(1):188-95. PubMed ID: 10604947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrandrine: a new ligand to block voltage-dependent Ca2+ and Ca(+)-activated K+ channels.
    Wang G; Lemos JR
    Life Sci; 1995; 56(5):295-306. PubMed ID: 7837929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rat supraoptic magnocellular neurones show distinct large conductance, Ca2+-activated K+ channel subtypes in cell bodies versus nerve endings.
    Dopico AM; Widmer H; Wang G; Lemos JR; Treistman SN
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):101-14. PubMed ID: 10432342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blocking T-type calcium channels with tetrandrine inhibits steroidogenesis in bovine adrenal glomerulosa cells.
    Rossier MF; Python CP; Capponi AM; Schlegel W; Kwan CY; Vallotton MB
    Endocrinology; 1993 Mar; 132(3):1035-43. PubMed ID: 8382595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single channel recordings of Nt- and L-type Ca2+ currents in rat neurohypophysial terminals.
    Wang X; Treistman SN; Lemos JR
    J Neurophysiol; 1993 Oct; 70(4):1617-28. PubMed ID: 8283218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two types of high-threshold calcium currents inhibited by omega-conotoxin in nerve terminals of rat neurohypophysis.
    Wang X; Treistman SN; Lemos JR
    J Physiol; 1992 Jan; 445():181-99. PubMed ID: 1323666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition by tetrandrine of calcium currents at mouse motor nerve endings.
    Wiegand H; Meis S; Gotzsch U
    Brain Res; 1990 Jul; 524(1):112-8. PubMed ID: 2169326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of tetrandrine on calcium channel currents of bovine chromaffin cells.
    Weinsberg F; Bickmeyer U; Wiegand H
    Neuropharmacology; 1994 Jul; 33(7):885-90. PubMed ID: 7969809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic currents in single smooth muscle cells of the canine renal artery.
    Gelband CH; Hume JR
    Circ Res; 1992 Oct; 71(4):745-58. PubMed ID: 1381293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of funnel web spider toxin on Ca2+ currents in neurohypophysial terminals.
    Wang G; Lemos JR
    Brain Res; 1994 Nov; 663(2):215-22. PubMed ID: 7874504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals.
    Ouyang W; Hemmings HC
    J Pharmacol Exp Ther; 2005 Feb; 312(2):801-8. PubMed ID: 15375177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three potassium channels in rat posterior pituitary nerve terminals.
    Bielefeldt K; Rotter JL; Jackson MB
    J Physiol; 1992 Dec; 458():41-67. PubMed ID: 1302271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vinpocetine-induced stimulation of calcium-activated potassium currents in rat pituitary GH3 cells.
    Wu SN; Li HF; Chiang HT
    Biochem Pharmacol; 2001 Apr; 61(7):877-92. PubMed ID: 11274974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic mechanisms of tetrandrine in cultured rat aortic smooth muscle cells.
    Wu SN; Hwang TL; Jan CR; Tseng CJ
    Eur J Pharmacol; 1997 May; 327(2-3):233-8. PubMed ID: 9200565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal.
    Bielefeldt K; Jackson MB
    J Neurophysiol; 1993 Jul; 70(1):284-98. PubMed ID: 8395581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ca2+]i inhibition of K+ channels in canine renal artery. Novel mechanism for agonist-induced membrane depolarization.
    Gelband CH; Hume JR
    Circ Res; 1995 Jul; 77(1):121-30. PubMed ID: 7788870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon.
    Lang RJ; Watson MJ
    Br J Pharmacol; 1998 Feb; 123(3):505-17. PubMed ID: 9504392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.