These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 1332060)
1. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. West JW; Patton DE; Scheuer T; Wang Y; Goldin AL; Catterall WA Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10910-4. PubMed ID: 1332060 [TBL] [Abstract][Full Text] [Related]
2. Amino acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III-IV linker. Patton DE; West JW; Catterall WA; Goldin AL Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10905-9. PubMed ID: 1332059 [TBL] [Abstract][Full Text] [Related]
3. Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels. Kellenberger S; West JW; Scheuer T; Catterall WA J Gen Physiol; 1997 May; 109(5):589-605. PubMed ID: 9154906 [TBL] [Abstract][Full Text] [Related]
4. A mutation in segment IVS6 disrupts fast inactivation of sodium channels. McPhee JC; Ragsdale DS; Scheuer T; Catterall WA Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12346-50. PubMed ID: 7991630 [TBL] [Abstract][Full Text] [Related]
5. A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. McPhee JC; Ragsdale DS; Scheuer T; Catterall WA J Biol Chem; 1995 May; 270(20):12025-34. PubMed ID: 7744852 [TBL] [Abstract][Full Text] [Related]
6. Effects of III-IV linker mutations on human heart Na+ channel inactivation gating. Hartmann HA; Tiedeman AA; Chen SF; Brown AM; Kirsch GE Circ Res; 1994 Jul; 75(1):114-22. PubMed ID: 8013069 [TBL] [Abstract][Full Text] [Related]
7. Restoration of fast inactivation in an inactivation-defective human heart sodium channel by the cysteine modifying reagent benzyl-MTS: analysis of IFM-ICM mutation. Chahine M; DeschĂȘnes I; Trottier E; Chen LQ; Kallen RG Biochem Biophys Res Commun; 1997 Apr; 233(3):606-10. PubMed ID: 9168898 [TBL] [Abstract][Full Text] [Related]
8. Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel. Qu Y; Rogers J; Tanada T; Scheuer T; Catterall WA Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11839-43. PubMed ID: 8524860 [TBL] [Abstract][Full Text] [Related]
9. Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Eaholtz G; Scheuer T; Catterall WA Neuron; 1994 May; 12(5):1041-8. PubMed ID: 8185942 [TBL] [Abstract][Full Text] [Related]
10. Solution structures of the inactivation gate particle peptides of rat brain type-IIA and human heart sodium channels in SDS micelles. Miyamoto K; Kanaori K; Nakagawa T; Kuroda Y J Pept Res; 2001 Mar; 57(3):203-14. PubMed ID: 11298921 [TBL] [Abstract][Full Text] [Related]
11. Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H- and 1H-NMR spectroscopies. Kuroda Y; Ogawa M; Nasu H; Terashima M; Kasahara M; Kiyama Y; Wakita M; Fujiwara Y; Fujii N; Nakagawa T Biophys J; 1996 Sep; 71(3):1191-207. PubMed ID: 8873993 [TBL] [Abstract][Full Text] [Related]
12. Molecular motions of the outer ring of charge of the sodium channel: do they couple to slow inactivation? Xiong W; Li RA; Tian Y; Tomaselli GF J Gen Physiol; 2003 Sep; 122(3):323-32. PubMed ID: 12913092 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of multiple methionine residues impairs rapid sodium channel inactivation. Kassmann M; Hansel A; Leipold E; Birkenbeil J; Lu SQ; Hoshi T; Heinemann SH Pflugers Arch; 2008 Sep; 456(6):1085-95. PubMed ID: 18369661 [TBL] [Abstract][Full Text] [Related]
14. A1152D mutation of the Na+ channel causes paramyotonia congenita and emphasizes the role of DIII/S4-S5 linker in fast inactivation. Bouhours M; Luce S; Sternberg D; Willer JC; Fontaine B; Tabti N J Physiol; 2005 Jun; 565(Pt 2):415-27. PubMed ID: 15790667 [TBL] [Abstract][Full Text] [Related]
15. Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Isacoff EY; Jan YN; Jan LY Nature; 1991 Sep; 353(6339):86-90. PubMed ID: 1881453 [TBL] [Abstract][Full Text] [Related]
17. The Na+ channel inactivation gate is a molecular complex: a novel role of the COOH-terminal domain. Motoike HK; Liu H; Glaaser IW; Yang AS; Tateyama M; Kass RS J Gen Physiol; 2004 Feb; 123(2):155-65. PubMed ID: 14744988 [TBL] [Abstract][Full Text] [Related]
18. A phosphorylation site in the Na+ channel required for modulation by protein kinase C. West JW; Numann R; Murphy BJ; Scheuer T; Catterall WA Science; 1991 Nov; 254(5033):866-8. PubMed ID: 1658937 [TBL] [Abstract][Full Text] [Related]
19. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation. Sheets MF; Hanck DA J Physiol; 2005 Feb; 563(Pt 1):83-93. PubMed ID: 15576449 [TBL] [Abstract][Full Text] [Related]
20. Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis. Hayward LJ; Brown RH; Cannon SC Biophys J; 1997 Mar; 72(3):1204-19. PubMed ID: 9138567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]