These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1332442)

  • 1. Structural analysis of periodate-oxidized heparin.
    Conrad HE; Guo Y
    Adv Exp Med Biol; 1992; 313():31-6. PubMed ID: 1332442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of heparin. Enzymatic sulfation of pentasaccharides.
    Kusche M; Oscarsson LG; Reynertson R; Rodén L; Lindahl U
    J Biol Chem; 1991 Apr; 266(12):7400-9. PubMed ID: 1902219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational transitions induced in heparin octasaccharides by binding with antithrombin III.
    Guerrini M; Guglieri S; Beccati D; Torri G; Viskov C; Mourier P
    Biochem J; 2006 Oct; 399(2):191-8. PubMed ID: 16796563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sulfatase specific for glucuronic acid 2-sulfate residues in glycosaminoglycans.
    Shaklee PN; Glaser JH; Conrad HE
    J Biol Chem; 1985 Aug; 260(16):9146-9. PubMed ID: 4019466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies on the bacterial lyase-resistant tetrasaccharides derived from the antithrombin III-binding site of porcine intestinal heparin.
    Yamada S; Yoshida K; Sugiura M; Sugahara K; Khoo KH; Morris HR; Dell A
    J Biol Chem; 1993 Mar; 268(7):4780-7. PubMed ID: 8444855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location of the antithrombin-binding sequence in the heparin chain.
    Oscarsson LG; Pejler G; Lindahl U
    J Biol Chem; 1989 Jan; 264(1):296-304. PubMed ID: 2909522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of five sulfated hexasaccharides prepared from porcine intestinal heparin using bacterial heparinase. Structural variants with apparent biosynthetic precursor-product relationships for the antithrombin III-binding site.
    Tsuda H; Yamada S; Yamane Y; Yoshida K; Hopwood JJ; Sugahara K
    J Biol Chem; 1996 May; 271(18):10495-502. PubMed ID: 8631846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparinase 1 selectivity for the 3,6-di-O-sulfo-2-deoxy-2-sulfamido-alpha-D-glucopyranose (1,4) 2-O-sulfo-alpha-L-idopyranosyluronic acid (GlcNS3S6S-IdoA2S) linkages.
    Xiao Z; Zhao W; Yang B; Zhang Z; Guan H; Linhardt RJ
    Glycobiology; 2011 Jan; 21(1):13-22. PubMed ID: 20729345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of heparin. O-sulfation of the antithrombin-binding region.
    Kusche M; Bäckström G; Riesenfeld J; Petitou M; Choay J; Lindahl U
    J Biol Chem; 1988 Oct; 263(30):15474-84. PubMed ID: 3139669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of heparin. The D-glucuronosyl- and N-acetyl-D-glucosaminyltransferase reactions and their relation to polymer modification.
    Lidholt K; Lindahl U
    Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):21-9. PubMed ID: 1417774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the antithrombin-binding site in heparin.
    Lindahl U; Bäckström G; Höök M; Thunberg L; Fransson LA; Linker A
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3198-202. PubMed ID: 226960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of heparin-derived tetrasaccharide complexed to the plasma protein antithrombin derived from NOEs, J-couplings and chemical shifts.
    Hricovíni M; Guerrini M; Bisio A
    Eur J Biochem; 1999 May; 261(3):789-801. PubMed ID: 10215897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of heparin. Availability of glucosaminyl 3-O-sulfation sites.
    Kusche M; Torri G; Casu B; Lindahl U
    J Biol Chem; 1990 May; 265(13):7292-300. PubMed ID: 2332430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.
    Angulo J; Hricovíni M; Gairi M; Guerrini M; de Paz JL; Ojeda R; Martín-Lomas M; Nieto PM
    Glycobiology; 2005 Oct; 15(10):1008-15. PubMed ID: 15958415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation of heparin pentasaccharide bound to antithrombin III.
    Hricovíni M; Guerrini M; Bisio A; Torri G; Petitou M; Casu B
    Biochem J; 2001 Oct; 359(Pt 2):265-72. PubMed ID: 11583572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the induced fit mechanism in antithrombin-heparin interaction using molecular dynamics simulations.
    Verli H; Guimarães JA
    J Mol Graph Model; 2005 Dec; 24(3):203-12. PubMed ID: 16146701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The disaccharides formed by deaminative cleavage of N-deacetylated glycosaminoglycans.
    Shaklee PN; Conrad HE
    Biochem J; 1986 Apr; 235(1):225-36. PubMed ID: 3741382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative susceptibilities of the glucosamine-glucuronic acid and N-acetylglucosamine-glucuronic acid linkages to heparin lyase III.
    Chai W; Leteux C; Westling C; Lindahl U; Feizi T
    Biochemistry; 2004 Jul; 43(26):8590-9. PubMed ID: 15222770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence variation in heparin octasaccharides with high affinity for antithrombin III.
    Atha DH; Stephens AW; Rimon A; Rosenberg RD
    Biochemistry; 1984 Nov; 23(24):5801-12. PubMed ID: 6525337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance liquid chromatographic/mass spectrometric studies on the susceptibility of heparin species to cleavage by heparanase.
    Bisio A; Mantegazza A; Urso E; Naggi A; Torri G; Viskov C; Casu B
    Semin Thromb Hemost; 2007 Jul; 33(5):488-95. PubMed ID: 17629845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.