These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Impact of cyclo-oxygenase blockade on juxtamedullary microvascular responses to angiotensin II in rat kidney. Harrison-Bernard LM; Carmines PK Clin Exp Pharmacol Physiol; 1995 Oct; 22(10):732-8. PubMed ID: 8575109 [TBL] [Abstract][Full Text] [Related]
8. Interactive nitric oxide-angiotensin II influences on renal microcirculation in angiotensin II-induced hypertension. Ichihara A; Imig JD; Inscho EW; Navar LG Hypertension; 1998 Jun; 31(6):1255-60. PubMed ID: 9622138 [TBL] [Abstract][Full Text] [Related]
9. Effects of angiotensin II on isolated rabbit afferent arterioles. Yoshida H; Tamaki T; Aki Y; Kimura S; Takenaka I; Abe Y Jpn J Pharmacol; 1994 Dec; 66(4):457-64. PubMed ID: 7723223 [TBL] [Abstract][Full Text] [Related]
10. Nitric oxide synthase inhibition activates L- and T-type Ca2+ channels in afferent and efferent arterioles. Feng MG; Navar LG Am J Physiol Renal Physiol; 2006 Apr; 290(4):F873-9. PubMed ID: 16263803 [TBL] [Abstract][Full Text] [Related]
11. Suppressed impact of nitric oxide on renal arteriolar function in rats with chronic heart failure. Ikenaga H; Ishii N; Didion SP; Zhang K; Cornish KG; Patel KP; Mayhan WG; Carmines PK Am J Physiol; 1999 Jan; 276(1):F79-87. PubMed ID: 9887083 [TBL] [Abstract][Full Text] [Related]
12. Renal effects of acute endothelial-derived relaxing factor blockade are not mediated by angiotensin II. Baylis C; Engels K; Samsell L; Harton P Am J Physiol; 1993 Jan; 264(1 Pt 2):F74-8. PubMed ID: 8430832 [TBL] [Abstract][Full Text] [Related]
13. Regulation of angiotensin II receptor AT1 subtypes in renal afferent arterioles during chronic changes in sodium diet. Ruan X; Wagner C; Chatziantoniou C; Kurtz A; Arendshorst WJ J Clin Invest; 1997 Mar; 99(5):1072-81. PubMed ID: 9062366 [TBL] [Abstract][Full Text] [Related]
14. Distinct modulation of superficial and juxtamedullary arterioles by prostaglandin in vivo. Matsuda H; Hayashi K; Arakawa K; Kubota E; Honda M; Tokuyama H; Suzuki H; Yamamoto T; Kajiya F; Saruta T Hypertens Res; 2002 Nov; 25(6):901-10. PubMed ID: 12484515 [TBL] [Abstract][Full Text] [Related]
15. Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P-450 pathways. Imig JD; Deichmann PC Am J Physiol; 1997 Aug; 273(2 Pt 2):F274-82. PubMed ID: 9277588 [TBL] [Abstract][Full Text] [Related]
16. Superoxide dismutase restores the influence of nitric oxide on renal arterioles in diabetes mellitus. Ohishi K; Carmines PK J Am Soc Nephrol; 1995 Feb; 5(8):1559-66. PubMed ID: 7756588 [TBL] [Abstract][Full Text] [Related]
17. Video-microscopic assessment of the role of tissue angiotensin-converting enzyme in the control of the renal microcirculation. ter Wee PM; Forster HG; Epstein M J Pharmacol Exp Ther; 1997 Apr; 281(1):434-9. PubMed ID: 9103527 [TBL] [Abstract][Full Text] [Related]
18. Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and ANG II. Barrett RJ; Droppleman DA Am J Physiol; 1993 Nov; 265(5 Pt 2):F651-9. PubMed ID: 8238545 [TBL] [Abstract][Full Text] [Related]
19. Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II. Carmines PK; Navar LG Am J Physiol; 1989 Jun; 256(6 Pt 2):F1015-20. PubMed ID: 2544103 [TBL] [Abstract][Full Text] [Related]
20. Segment-specific effect of chloride channel blockade on rat renal arteriolar contractile responses to angiotensin II. Carmines PK Am J Hypertens; 1995 Jan; 8(1):90-4. PubMed ID: 7734105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]