These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1332547)

  • 1. A method for evaluating the effects of ligands upon Gs protein-coupled receptors using a recombinant melanophore-based bioassay.
    Potenza MN; Graminski GF; Lerner MR
    Anal Biochem; 1992 Nov; 206(2):315-22. PubMed ID: 1332547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid quantitative bioassay for evaluating the effects of ligands upon receptors that modulate cAMP levels in a melanophore cell line.
    Potenza MN; Lerner MR
    Pigment Cell Res; 1992 Dec; 5(6):372-8. PubMed ID: 1337205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional expression and characterization of human D2 and D3 dopamine receptors.
    Potenza MN; Graminski GF; Schmauss C; Lerner MR
    J Neurosci; 1994 Mar; 14(3 Pt 2):1463-76. PubMed ID: 7907363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a serotonin receptor endogenous to frog melanophores.
    Potenza MN; Lerner MR
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Jan; 349(1):11-9. PubMed ID: 8139699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new in vitro melanophore bioassay for MSH using tail-fins of Xenopus tadpoles.
    de Graan PN; Molenaar R; van de Veerdonk FC
    Mol Cell Endocrinol; 1983 Oct; 32(2-3):271-84. PubMed ID: 6642076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pigment dispersion in frog melanophores can be induced by a phorbol ester or stimulation of a recombinant receptor that activates phospholipase C.
    Graminski GF; Jayawickreme CK; Potenza MN; Lerner MR
    J Biol Chem; 1993 Mar; 268(8):5957-64. PubMed ID: 8383680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional expression of recombinant G-protein-coupled receptors monitored by video imaging of pigment movement in melanophores.
    McClintock TS; Graminski GF; Potenza MN; Jayawickreme CK; Roby-Shemkovitz A; Lerner MR
    Anal Biochem; 1993 Mar; 209(2):298-305. PubMed ID: 8385890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium requirement for alpha-MSH action on melanophores: studies with forskolin.
    de Graan PN; van de Kamp AJ; Hup DR; Gispen WH; van de Veerdonk FC
    J Recept Res; 1984; 4(1-6):521-36. PubMed ID: 6098671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An endogenous 5-HT(7) receptor mediates pigment granule dispersion in Xenopus laevis melanophores.
    Teh MT; Sugden D
    Br J Pharmacol; 2001 Apr; 132(8):1799-808. PubMed ID: 11309252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of constitutive G protein-coupled receptor activity for drug discovery.
    Chen G; Way J; Armour S; Watson C; Queen K; Jayawickreme CK; Chen WJ; Kenakin T
    Mol Pharmacol; 2000 Jan; 57(1):125-34. PubMed ID: 10617687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative pharmacology of adrenergic alpha(2C) receptors coupled to Ca(2+) signaling through different Galpha proteins.
    Kurko D; Bekes Z; Gere A; Baki A; Boros A; Kolok S; Bugovics G; Nagy J; Szombathelyi Z; Ignácz-Szendrei G
    Neurochem Int; 2009 Dec; 55(7):467-75. PubMed ID: 19426776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta 1- and beta 2-adrenergic receptors display subtype-selective coupling to Gs.
    Green SA; Holt BD; Liggett SB
    Mol Pharmacol; 1992 May; 41(5):889-93. PubMed ID: 1350321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sensitive bioassay for melanotropic hormones using isolated medaka melanophores.
    Negishi S; Kawazoe I; Kawauchi H
    Gen Comp Endocrinol; 1988 Apr; 70(1):127-32. PubMed ID: 2836261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores.
    Ebisawa T; Karne S; Lerner MR; Reppert SM
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):6133-7. PubMed ID: 7517042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proliferation in vitro of melanophores from Xenopus laevis.
    Fukuzawa T; Ide H
    J Exp Zool; 1983 May; 226(2):239-44. PubMed ID: 6306135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melanophore pigment dispersion responses to agonists show two patterns of sensitivity to inhibitors of cAMP-dependent protein kinase and protein kinase C.
    McClintock TS; Rising JP; Lerner MR
    J Cell Physiol; 1996 Apr; 167(1):1-7. PubMed ID: 8698826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone.
    van Zoest ID; Heijmen PS; Cruijsen PM; Jenks BG
    Gen Comp Endocrinol; 1989 Oct; 76(1):19-28. PubMed ID: 2599346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis by imaging of melanophore pigment dispersion of chimeric receptors constructed by recombinant polymerase chain reaction.
    McClintock TS; Lerner MR
    Brain Res Brain Res Protoc; 1997 Dec; 2(1):59-68. PubMed ID: 9438073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores.
    Sugden D; Rowe SJ
    J Cell Biol; 1992 Dec; 119(6):1515-21. PubMed ID: 1334961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tools for investigating functional interactions between ligands and G-protein-coupled receptors.
    Lerner MR
    Trends Neurosci; 1994 Apr; 17(4):142-6. PubMed ID: 7517590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.