These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1332614)

  • 1. Mechanism of lysozyme inactivation and degradation by iron.
    Sellak H; Franzini E; Hakim J; Pasquier C
    Arch Biochem Biophys; 1992 Nov; 299(1):172-8. PubMed ID: 1332614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose. Quantitative determination of malondialdehyde.
    Cheeseman KH; Beavis A; Esterbauer H
    Biochem J; 1988 Jun; 252(3):649-53. PubMed ID: 3421915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streptonigrin-induced deoxyribose degradation: inhibition by superoxide dismutase, hydroxyl radical scavengers and iron chelators.
    Gutteridge JM
    Biochem Pharmacol; 1984 Oct; 33(19):3059-62. PubMed ID: 6091667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the inhibition of catalase by ascorbate. Roles of active oxygen species, copper and semidehydroascorbate.
    Davison AJ; Kettle AJ; Fatur DJ
    J Biol Chem; 1986 Jan; 261(3):1193-200. PubMed ID: 3003060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radical inactivation of rabbit muscle creatinine kinase: catalysis by physiological and hydrolyzed ICRF-187 (ICRF-198) iron chelates.
    Thomas C; Carr AC; Winterbourn CC
    Free Radic Res; 1994; 21(6):387-97. PubMed ID: 7834053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative damage to lysozyme by the hydroxyl radical: comparative effects of scavengers.
    Franzini E; Sellak H; Hakim J; Pasquier C
    Biochim Biophys Acta; 1993 Nov; 1203(1):11-7. PubMed ID: 8218378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.
    Ambruso DR; Johnston RB
    J Clin Invest; 1981 Feb; 67(2):352-60. PubMed ID: 6780607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical reduction of ferric iron by chelators results in DNA strand breaks.
    Chao CC; Aust AE
    Arch Biochem Biophys; 1993 Feb; 300(2):544-50. PubMed ID: 8382025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin.
    Kocha T; Yamaguchi M; Ohtaki H; Fukuda T; Aoyagi T
    Biochim Biophys Acta; 1997 Feb; 1337(2):319-26. PubMed ID: 9048910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relative effectiveness of .OH, H2O2, O2-, and reducing free radicals in causing damage to biomembranes. A study of radiation damage to erythrocyte ghosts using selective free radical scavengers.
    Kong S; Davison AJ
    Biochim Biophys Acta; 1981 Jan; 640(1):313-25. PubMed ID: 6260172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of mitochondrial adenosine triphosphatase from Trypanosoma cruzi by oxygen radicals.
    Cataldi de Flombaum MA; Stoppani AO
    Biochem Int; 1986 Jun; 12(6):785-93. PubMed ID: 3017349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma.
    Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative damage of bovine serum albumin and other enzyme proteins by iron-chelate complexes.
    Ogino T; Okada S
    Biochim Biophys Acta; 1995 Dec; 1245(3):359-65. PubMed ID: 8541312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkaline phosphatase inactivation by mixed function oxidation systems.
    Mordente A; Miggiano GA; Martorana GE; Meucci E; Santini SA; Castelli A
    Arch Biochem Biophys; 1987 Oct; 258(1):176-85. PubMed ID: 2821917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of cobalt(II) and iron(II) hydroxyl and superoxide free radical formation.
    Kadiiska MB; Maples KR; Mason RP
    Arch Biochem Biophys; 1989 Nov; 275(1):98-111. PubMed ID: 2554814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes.
    Cederbaum AI; Qureshi A
    Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reactivity of the SH group of bovine serum albumin with free radicals.
    Di Simplicio P; Cheeseman KH; Slater TF
    Free Radic Res Commun; 1991; 14(4):253-62. PubMed ID: 1651886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of serotonin and dopamine to 'serotonin binding proteins' in bovine frontal cortex: evidence for iron-induced oxidative mechanisms.
    Jimenez Del Rio M; Velez Pardo C; Pinxteren J; De Potter W; Ebinger G; Vauquelin G
    Eur J Pharmacol; 1993 Sep; 247(1):11-21. PubMed ID: 8258356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.