These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 1332676)

  • 1. Specificity and affinity of binding of phosphate-containing compounds to CheY protein.
    Kar L; De Croos PZ; Roman SJ; Matsumura P; Johnson ME
    Biochem J; 1992 Oct; 287 ( Pt 2)(Pt 2):533-43. PubMed ID: 1332676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bivalent-metal binding to CheY protein. Effect on protein conformation.
    Kar L; Matsumura P; Johnson ME
    Biochem J; 1992 Oct; 287 ( Pt 2)(Pt 2):521-31. PubMed ID: 1445211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ.
    Blat Y; Eisenbach M
    Biochemistry; 1994 Feb; 33(4):902-6. PubMed ID: 8305438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular ATP formation on vascular endothelial cells is mediated by ecto-nucleotide kinase activities via phosphotransfer reactions.
    Yegutkin GG; Henttinen T; Jalkanen S
    FASEB J; 2001 Jan; 15(1):251-260. PubMed ID: 11149913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tightly bound nucleotides affect phosphate binding to mitochondrial F1-ATPase.
    Kozlov IA; Vulfson EN
    FEBS Lett; 1985 Mar; 182(2):425-8. PubMed ID: 2858408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and biochemical characterization of an analogue of CheY-phosphate, a signal transduction protein in bacterial chemotaxis.
    Halkides CJ; Zhu X; Phillion DP; Matsumura P; Dahlquist FW
    Biochemistry; 1998 Sep; 37(39):13674-80. PubMed ID: 9753454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TNP-ATP and TNP-ADP as probes of the nucleotide binding site of CheA, the histidine protein kinase in the chemotaxis signal transduction pathway of Escherichia coli.
    Stewart RC; VanBruggen R; Ellefson DD; Wolfe AJ
    Biochemistry; 1998 Sep; 37(35):12269-79. PubMed ID: 9724541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide binding by the nitrogenase Fe protein: a 31P NMR study of ADP and ATP interactions with the Fe protein of Klebsiella pneumoniae.
    Miller RW; Eady RR; Gormal C; Fairhurst SA; Smith BE
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):601-7. PubMed ID: 9729468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide binding to tubulin-investigations by nuclear magnetic resonance spectroscopy.
    Rai SS; Kuchroo K; Kasturi SR
    Biochim Biophys Acta; 1996 Jan; 1292(1):77-88. PubMed ID: 8547352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic mechanism of phosphorylation and dephosphorylation of CheY: kinetic characterization of imidazole phosphates as phosphodonors and the role of acid catalysis.
    Silversmith RE; Appleby JL; Bourret RB
    Biochemistry; 1997 Dec; 36(48):14965-74. PubMed ID: 9398221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of homogeneous mitochondrial ATPase from rat liver with adenine nucleotides and inorganic phosphate.
    Pedersen PL
    J Supramol Struct; 1975; 3(3):222-30. PubMed ID: 127085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations.
    Sigel A; Sigel H; Sigel RKO
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35565975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of a stable analog of the phosphorylated form of the chemotaxis protein CheY.
    Silversmith RE; Bourret RB
    Protein Eng; 1998 Mar; 11(3):205-12. PubMed ID: 9613844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide binding by the histidine kinase CheA.
    Bilwes AM; Quezada CM; Croal LR; Crane BR; Simon MI
    Nat Struct Biol; 2001 Apr; 8(4):353-60. PubMed ID: 11276258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis.
    Lukat GS; Stock AM; Stock JB
    Biochemistry; 1990 Jun; 29(23):5436-42. PubMed ID: 2201404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the binding interfaces on CheY for two of its targets, the phosphatase CheZ and the flagellar switch protein fliM.
    McEvoy MM; Bren A; Eisenbach M; Dahlquist FW
    J Mol Biol; 1999 Jun; 289(5):1423-33. PubMed ID: 10373376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate selection by RNA polymerase from E. coli. The role of ribose and 5'-triphosphate fragments, and nucleotides interaction.
    SzafraƄski P; Smagowicz WJ; Wierzchowski KL
    Acta Biochim Pol; 1985; 32(4):329-49. PubMed ID: 3938589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of nucleotide cofactors with the Escherichia coli replication factor DnaC protein.
    Galletto R; Rajendran S; Bujalowski W
    Biochemistry; 2000 Oct; 39(42):12959-69. PubMed ID: 11041861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational coupling in the chemotaxis response regulator CheY.
    Schuster M; Silversmith RE; Bourret RB
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6003-8. PubMed ID: 11353835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.