BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1332860)

  • 21. Sequence-specific resonance assignment and secondary structure of (1-71) bacterioopsin.
    Sobol AG; Arseniev AS; Abdulaeva GV; Musina LYu ; Bystrov VF
    J Biomol NMR; 1992 Mar; 2(2):161-71. PubMed ID: 1422150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin.
    Sternberg B; L'Hostis C; Whiteway CA; Watts A
    Biochim Biophys Acta; 1992 Jul; 1108(1):21-30. PubMed ID: 1643078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability of the C-terminal alpha-helical domain of bacteriorhodopsin that protrudes from the membrane surface, as studied by high-resolution solid-state 13C NMR.
    Yamaguchi S; Tuzi S; Seki T; Tanio M; Needleman R; Lanyi JK; Naito A; Saitô H
    J Biochem; 1998 Jan; 123(1):78-86. PubMed ID: 9504412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Conformational analysis of a segment in bacterioopsin by two-dimensional (1)H-NMR spectroscopy].
    Maslennikov IV; Lomize AL; Arsen'ev AS
    Bioorg Khim; 1991 Nov; 17(11):1456-69. PubMed ID: 1811541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence-specific 1H, 13C and 15N resonance assignments and secondary structure of [2Fe-2S] ferredoxin from Halobacterium salinarum.
    Schweimer K; Marg BL; Oesterhelt D; Rösch P; Sticht H
    J Biomol NMR; 2000 Apr; 16(4):347-8. PubMed ID: 10826887
    [No Abstract]   [Full Text] [Related]  

  • 26. 15N T2' relaxation times of bacteriorhodopsin transmembrane amide nitrogens.
    Soubias O; Réat V; Saurel O; Milon A
    Magn Reson Chem; 2004 Feb; 42(2):212-7. PubMed ID: 14745802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pressure-induced isomerization of retinal on bacteriorhodopsin as disclosed by fast magic angle spinning NMR.
    Kawamura I; Degawa Y; Yamaguchi S; Nishimura K; Tuzi S; Saitô H; Naito A
    Photochem Photobiol; 2007; 83(2):346-50. PubMed ID: 17076543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence-specific assignments of the backbone 1H, 13C, and 15N resonances of the MutT enzyme by heteronuclear multidimensional NMR.
    Abeygunawardana C; Weber DJ; Frick DN; Bessman MJ; Mildvan AS
    Biochemistry; 1993 Dec; 32(48):13071-80. PubMed ID: 8241161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR.
    Kawase Y; Tanio M; Kira A; Yamaguchi S; Tuzi S; Naito A; Kataoka M; Lanyi JK; Needleman R; Saitô H
    Biochemistry; 2000 Nov; 39(47):14472-80. PubMed ID: 11087400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uniform 15N labeling of a fungal peptide: the structure and dynamics of an alamethicin by 15N and 1H NMR spectroscopy.
    Yee AA; O'Neil JD
    Biochemistry; 1992 Mar; 31(12):3135-43. PubMed ID: 1554700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Residue-specific millisecond to microsecond fluctuations in bacteriorhodopsin induced by disrupted or disorganized two-dimensional crystalline lattice, through modified lipid-helix and helix-helix interactions, as revealed by 13C NMR.
    Saitô H; Tsuchida T; Ogawa K; Arakawa T; Yamaguchi S; Tuzi S
    Biochim Biophys Acta; 2002 Sep; 1565(1):97-106. PubMed ID: 12225857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying anisotropic constraints in multiply labeled bacteriorhodopsin by 15N MAOSS NMR: a general approach to structural studies of membrane proteins.
    Mason AJ; Grage SL; Straus SK; Glaubitz C; Watts A
    Biophys J; 2004 Mar; 86(3):1610-7. PubMed ID: 14990487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonance Raman spectroscopy of specifically [epsilon-15N]lysine-labeled bacteriorhodopsin.
    Argade PV; Rothschild KJ; Kawamoto AH; Herzfeld J; Herlihy WC
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1643-6. PubMed ID: 6785758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 13C NMR study on conformation and dynamics of the transmembrane alpha-helices, loops, and C-terminus of [3-13C]Ala-labeled bacteriorhodopsin.
    Tuzi S; Naito A; Saitô H
    Biochemistry; 1994 Dec; 33(50):15046-52. PubMed ID: 7999762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopic studies of bacteriorhodopsin fragments dissolved in organic solution.
    Torres J; Padrós E
    Biophys J; 1995 May; 68(5):2049-55. PubMed ID: 7612847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functionally relevant coupled dynamic profile of bacteriorhodopsin and lipids in purple membranes.
    Kamihira M; Watts A
    Biochemistry; 2006 Apr; 45(13):4304-13. PubMed ID: 16566605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions of both melittin and its site-specific mutants with bacteriorhodopsin of Halobacterium halobium: sites of electrostatic interaction on melittin.
    Jiang QX; Hu KS; Shi H
    Photochem Photobiol; 1994 Aug; 60(2):175-8. PubMed ID: 7938217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR studies of the secondary structure in solution and the steroid binding site of delta5-3-ketosteroid isomerase in complexes with diamagnetic and paramagnetic steroids.
    Zhao Q; Abeygunawardana C; Mildvan AS
    Biochemistry; 1997 Mar; 36(12):3458-72. PubMed ID: 9131995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study.
    Hu JG; Sun BQ; Bizounok M; Hatcher ME; Lansing JC; Raap J; Verdegem PJ; Lugtenburg J; Griffin RG; Herzfeld J
    Biochemistry; 1998 Jun; 37(22):8088-96. PubMed ID: 9609703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.