BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 1333160)

  • 1. Transmembrane organization of the Na+,K(+)-ATPase molecule.
    Modyanov N; Lutsenko S; Chertova E; Efremov R; Gulyaev D
    Acta Physiol Scand Suppl; 1992; 607():49-58. PubMed ID: 1333160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional domains of Na,K-ATPase; conformational transitions in the alpha-subunit and ion occlusion.
    Jørgensen PL
    Acta Physiol Scand Suppl; 1992; 607():89-95. PubMed ID: 1333164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic lipid-protein stoichiometry on E1 and E2 conformations of the Na+/K+ -ATPase.
    Mangialavori I; Montes MR; Rossi RC; Fedosova NU; Rossi JP
    FEBS Lett; 2011 Apr; 585(8):1153-7. PubMed ID: 21419126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of mutations to the phosphorylation site of the alpha-subunit of Na, K-ATPase for ATP binding and E1-E2 conformational equilibrium.
    Pedersen PA; Rasmussen JH; Jørgensen PL
    Biochemistry; 1996 Dec; 35(50):16085-93. PubMed ID: 8973179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the lipid-protein interface and transmembrane structural transitions of the Torpedo Na,K-ATPase using hydrophobic photoreactive probes.
    Blanton MP; McCardy EA
    Biochemistry; 2000 Nov; 39(44):13534-44. PubMed ID: 11063590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residues within transmembrane domains 4 and 6 of the Na,K-ATPase alpha subunit are important for Na+ selectivity.
    Sánchez G; Blanco G
    Biochemistry; 2004 Jul; 43(28):9061-74. PubMed ID: 15248763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeling of intramembrane segments of the alpha-subunit and beta-subunit of pure membrane-bound (Na+ + K+)-ATPase with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine.
    Jørgensen PL; Brunner J
    Biochim Biophys Acta; 1983 Nov; 735(2):291-6. PubMed ID: 6313057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of renal Na,K-ATPase from cryo-electron microscopy of two-dimensional crystals.
    Hebert H; Purhonen P; Vorum H; Thomsen K; Maunsbach AB
    J Mol Biol; 2001 Nov; 314(3):479-94. PubMed ID: 11846561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-catalysed cleavage of Na,K-ATPase as a tool for study of structure-function relations.
    Goldshleger R; Bar Shimon M; Or E; Karlish SJ
    Acta Physiol Scand Suppl; 1998 Aug; 643():89-97. PubMed ID: 9789550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxy-terminal regions of the sarcoplasmic/endoplasmic reticulum Ca(2+)- and the Na+/K(+)-ATPases control their K+ sensitivity.
    Ishii T; Hata F; Lemas MV; Fambrough DM; Takeyasu K
    Biochemistry; 1997 Jan; 36(2):442-51. PubMed ID: 9003197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural arrangement and conformational dynamics of the gamma subunit of the Na+/K+-ATPase.
    Dempski RE; Lustig J; Friedrich T; Bamberg E
    Biochemistry; 2008 Jan; 47(1):257-66. PubMed ID: 18081317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the distance change between cysteine-457 and the nucleotide binding site when sodium pump changes conformation from E1 to E2 by fluorescence energy transfer measurements.
    Lin SH; Faller LD
    Biochemistry; 1996 Jun; 35(25):8419-28. PubMed ID: 8679600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for active Na,K-transport by Na,K-ATPase from outer renal medulla.
    Jørgensen PL
    Biochem Soc Symp; 1985; 50():59-79. PubMed ID: 2428372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane domains in proteins. III. Modeling of intramembrane moiety of Na+, K(+)-ATPase.
    Efremov RG; Gulyaev DI; Modyanov NN
    J Protein Chem; 1993 Apr; 12(2):143-52. PubMed ID: 8387792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic photolabeling identifies BHA2 as the subunit mediating the interaction of bromelain-solubilized influenza virus hemagglutinin with liposomes at low pH.
    Harter C; Bächi T; Semenza G; Brunner J
    Biochemistry; 1988 Mar; 27(6):1856-64. PubMed ID: 3378034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the membrane-embedded F0 part of F1F0 ATP synthase from Escherichia coli as inferred from labeling with 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine.
    Hoppe J; Brunner J; Jørgensen BB
    Biochemistry; 1984 Nov; 23(23):5610-6. PubMed ID: 6210106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a hydrophobic, photoreactive probe, labels calmodulin and calmodulin fragments in a Ca2+-dependent way.
    Krebs J; Buerkler J; Guerini D; Brunner J; Carafoli E
    Biochemistry; 1984 Jan; 23(3):400-3. PubMed ID: 6704378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe-catalyzed cleavage of the alpha subunit of Na/K-ATPase: evidence for conformation-sensitive interactions between cytoplasmic domains.
    Goldshleger R; Karlish SJ
    Proc Natl Acad Sci U S A; 1997 Sep; 94(18):9596-601. PubMed ID: 9275168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane topology of light-harvesting protein B870-alpha of Rhodospirillum rubrum G-9+. Amino acid residues in contact with the lipid bilayer as inferred from labeling with photogenerated carbenes.
    Meister H; Bachofen R; Semenza G; Brunner J
    J Biol Chem; 1985 Dec; 260(30):16326-31. PubMed ID: 3934175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane domains in proteins: I. Hydrophobic properties of transmembrane segments of Na+, K(+)-ATPase.
    Efremov RG; Gulyaev DI; Vergoten G; Modyanov NN
    J Protein Chem; 1992 Dec; 11(6):665-75. PubMed ID: 1334655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.