These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 1333420)
21. [Enzymes involved in thiosulfate metabolism in Thiocapsa roseopersicina under various conditions of growth]. Petushkova IuP; Ivanovskiĭ RN Mikrobiologiia; 1976; 45(6):960-5. PubMed ID: 1012054 [TBL] [Abstract][Full Text] [Related]
22. The effect of nitrogen oxide level modulation on the content of thiol compounds and anaerobic sulfur metabolism in mice brains. Sokołowska M; Włodek L; Srebro Z; Wróbel M Neurobiology (Bp); 1999; 7(4):461-77. PubMed ID: 10897806 [TBL] [Abstract][Full Text] [Related]
23. Sulfurtransferases and the content of cysteine, glutathione and sulfane sulfur in tissues of the frog Rana temporaria. Wróbel M; Sura P; Srebro Z Comp Biochem Physiol B Biochem Mol Biol; 2000 Feb; 125(2):211-7. PubMed ID: 10817908 [TBL] [Abstract][Full Text] [Related]
24. Effects of thyroxine on L-cysteine desulfuration in mouse liver. Wróbel M; Ubuka T; Yao WB; Abe T Acta Med Okayama; 2000 Feb; 54(1):9-14. PubMed ID: 10709617 [TBL] [Abstract][Full Text] [Related]
25. In vitro effect of cyanide, thiosulphate and S-adenosyl-L-methionine on the activity of rhodanese and other enzymes. Buzaleh AM; Vazquez ES; Del Carmen Batlle AM Gen Pharmacol; 1991; 22(2):281-6. PubMed ID: 1647344 [TBL] [Abstract][Full Text] [Related]
26. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. Nagahara N; Okazaki T; Nishino T J Biol Chem; 1995 Jul; 270(27):16230-5. PubMed ID: 7608189 [TBL] [Abstract][Full Text] [Related]
27. Age-related changes in the activity of cerebral rhodanese in mice during the first four months of life. Sani M; Sebai H; Gadacha W; Boughattas NA; Reinberg A; Ben-Attia M Brain Dev; 2008 Apr; 30(4):279-86. PubMed ID: 17997247 [TBL] [Abstract][Full Text] [Related]
28. Reaction of rhodanese with dithiothreitol. Pecci L; Pensa B; Costa M; Cignini PL; Cannella C Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188 [TBL] [Abstract][Full Text] [Related]
29. Rhodanese activity in different tissues of the ostrich. Eskandarzade N; Aminlari M; Golami S; Tavana M Br Poult Sci; 2012; 53(2):270-3. PubMed ID: 22646793 [TBL] [Abstract][Full Text] [Related]
31. A reexamination of the postulated charge transfer interactions at the active site of the enzyme rhodanese. Baillie RD; Horowitz PM Biochim Biophys Acta; 1976 Apr; 429(2):402-8. PubMed ID: 130934 [TBL] [Abstract][Full Text] [Related]
32. Soaking in Cs2SO4 reveals a caesium-aromatic interaction in bovine-liver rhodanese. Kooystra PJ; Kalk KH; Hol WG Eur J Biochem; 1988 Nov; 177(2):345-9. PubMed ID: 3191921 [TBL] [Abstract][Full Text] [Related]
33. Mitochondrial and cytosolic rhodanese from liver of DAB treated mice. II. Some properties and spectral studies. Vazquez E; Polo C; Batlle AM Cancer Biochem Biophys; 1995 Jun; 15(1):55-63. PubMed ID: 8536221 [TBL] [Abstract][Full Text] [Related]
34. The Expression and Activity of Rhodanese, 3-Mercaptopyruvate Sulfurtransferase, Cystathionine γ-Lyase in the Most Frequently Chosen Cellular Research Models. Kaczor-Kamińska M; Kaminski K; Wróbel M Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944503 [TBL] [Abstract][Full Text] [Related]
35. Comparative studies on the distribution of rhodanese and beta-mercaptopyruvate sulfurtransferase in different organs of sheep (Ovis aries) and cattle (Bos taurus). Aminlari M; Gilanpour H; Taghavianpour H; Veseghi T Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 92(2):259-62. PubMed ID: 2565183 [TBL] [Abstract][Full Text] [Related]
36. Hypertension and Aging Affect Liver Sulfur Metabolism in Rats. Szlęzak D; Bronowicka-Adamska P; Hutsch T; Ufnal M; Wróbel M Cells; 2021 May; 10(5):. PubMed ID: 34069923 [TBL] [Abstract][Full Text] [Related]
37. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study. Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161 [TBL] [Abstract][Full Text] [Related]
38. Variations in rhodanese activity in rat submandibular gland with time of day. Abiko Y; Tanaka M; Muro H Nichidai Koko Kagaku; 1984 Dec; 10(4):400-3. PubMed ID: 6597350 [No Abstract] [Full Text] [Related]
39. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning, overexpression, and site-directed mutagenesis. Nagahara N; Nishino T J Biol Chem; 1996 Nov; 271(44):27395-401. PubMed ID: 8910318 [TBL] [Abstract][Full Text] [Related]
40. Rhodanese and 3-mercaptopyruvate sulphurtransferase activities in human red blood cells of different age groups. Włodek L Folia Biol (Krakow); 1981; 29(3-4):279-86. PubMed ID: 6953037 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]