These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 1333978)
21. Neuronal-associated tumor necrosis factor (TNF alpha): its role in noradrenergic functioning and modification of its expression following antidepressant drug administration. Ignatowski TA; Noble BK; Wright JR; Gorfien JL; Heffner RR; Spengler RN J Neuroimmunol; 1997 Oct; 79(1):84-90. PubMed ID: 9357451 [TBL] [Abstract][Full Text] [Related]
22. Possible relationship of the locus coeruleus--hippocampal noradrenergic neurons to depression and mode of action of antidepressant drugs. Kostowski W Pol J Pharmacol Pharm; 1985; 37(6):727-43. PubMed ID: 3008134 [TBL] [Abstract][Full Text] [Related]
23. Effects of the 5-hydroxytryptamine receptor antagonist, BMY 7378, on 5-hydroxytryptamine neurotransmission: electrophysiological studies in the rat central nervous system. Chaput Y; de Montigny C J Pharmacol Exp Ther; 1988 Jul; 246(1):359-70. PubMed ID: 2839669 [TBL] [Abstract][Full Text] [Related]
24. Effects of the selective norepinephrine reuptake inhibitor reboxetine on norepinephrine and serotonin transmission in the rat hippocampus. Szabo ST; Blier P Neuropsychopharmacology; 2001 Dec; 25(6):845-57. PubMed ID: 11750178 [TBL] [Abstract][Full Text] [Related]
25. Discrete local application of corticotropin-releasing factor increases locus coeruleus discharge and extracellular norepinephrine in rat hippocampus. Page ME; Abercrombie ED Synapse; 1999 Sep; 33(4):304-13. PubMed ID: 10421711 [TBL] [Abstract][Full Text] [Related]
26. Long-term administration of cariprazine increases locus coeruleus noradrenergic neurons activity and serotonin El Mansari M; Ebrahimzadeh M; Hamati R; Iro CM; Farkas B; Kiss B; Adham N; Blier P J Psychopharmacol; 2020 Oct; 34(10):1143-1154. PubMed ID: 32684081 [TBL] [Abstract][Full Text] [Related]
27. Chronic treatment with desipramine facilitates its effect on extracellular noradrenaline in the rat hippocampus: studies on the role of presynaptic alpha2-adrenoceptors. Sacchetti G; Bernini M; Gobbi M; Parini S; Pirona L; Mennini T; Samanin R Naunyn Schmiedebergs Arch Pharmacol; 2001 Jan; 363(1):66-72. PubMed ID: 11191838 [TBL] [Abstract][Full Text] [Related]
28. Enhancement of serotonergic and noradrenergic neurotransmission in the rat hippocampus by sustained administration of bupropion. Ghanbari R; El Mansari M; Blier P Psychopharmacology (Berl); 2011 Sep; 217(1):61-73. PubMed ID: 21445565 [TBL] [Abstract][Full Text] [Related]
29. Decrease in locus coeruleus [3H]idazoxan binding site density in genetically epilepsy-prone (GEPR) rats. Razani-Boroujerdi S; Tso-Olivas DY; Hoffman TJ; Weiss GK; Savage DD Brain Res; 1993 Jan; 600(2):181-6. PubMed ID: 8094641 [TBL] [Abstract][Full Text] [Related]
30. Blockade of the serotonin and norepinephrine uptake processes by duloxetine: in vitro and in vivo studies in the rat brain. Kasamo K; Blier P; De Montigny C J Pharmacol Exp Ther; 1996 Apr; 277(1):278-86. PubMed ID: 8613930 [TBL] [Abstract][Full Text] [Related]
32. Clonidine causes antidepressant-like effects in rats by activating alpha 2-adrenoceptors outside the locus coeruleus. Cervo L; Samanin R Eur J Pharmacol; 1991 Feb; 193(3):309-13. PubMed ID: 1675994 [TBL] [Abstract][Full Text] [Related]
33. Idazoxan (RX 781094) selectively antagonizes alpha 2-adrenoceptors on rat central neurons. Freedman JE; Aghajanian GK Eur J Pharmacol; 1984 Oct; 105(3-4):265-72. PubMed ID: 6150858 [TBL] [Abstract][Full Text] [Related]
34. Changes in noradrenergic terminal excitability induced by amphetamine and their relation to impulse traffic. Nakamura S; Tepper JM; Young SJ; Groves PM Neuroscience; 1982; 7(9):2217-24. PubMed ID: 6292781 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of noradrenergic locus coeruleus neurons by C1 adrenergic cells in the rostral ventral medulla. Aston-Jones G; Astier B; Ennis M Neuroscience; 1992; 48(2):371-81. PubMed ID: 1351268 [TBL] [Abstract][Full Text] [Related]
36. Effects of chronic desipramine treatment on rat brain noradrenergic responses to alpha-adrenergic drugs. McMillen BA; Warnack W; German DC; Shore PA Eur J Pharmacol; 1980 Feb; 61(3):239-46. PubMed ID: 6102522 [TBL] [Abstract][Full Text] [Related]
37. Inhibition of both noradrenergic and serotonergic neurons in brain by the alpha-adrenergic agonist clonidine. Svensson TH; Bunney BS; Aghajanian GK Brain Res; 1975 Jul; 92(2):291-306. PubMed ID: 1174954 [TBL] [Abstract][Full Text] [Related]
38. Electrophysiological and biochemical responses of noradrenergic neurons to a non-amphetamine CNS stimulant. German DC; Sanghera MK; Kiser RS; McMillen BA; Shore PA Brain Res; 1979 Apr; 166(2):331-9. PubMed ID: 427592 [TBL] [Abstract][Full Text] [Related]
39. Effects of desipramine and maprotiline on the coeruleus-cortical noradrenergic system in anaesthetized rats. Ceci A; Borsini F Eur J Pharmacol; 1996 Sep; 312(2):189-93. PubMed ID: 8894595 [TBL] [Abstract][Full Text] [Related]
40. Amphetamine's effects on terminal excitability of noradrenergic locus coeruleus neurons are impulse-dependent at low but not high doses. Ryan LJ; Tepper JM; Young SJ; Groves PM Brain Res; 1985 Aug; 341(1):155-63. PubMed ID: 4041784 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]