These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 1333991)
21. Protein conformational changes in tetraheme cytochromes detected by FTIR spectroelectrochemistry: Desulfovibrio desulfuricans Norway 4 and Desulfovibrio gigas cytochromes c3. Schlereth DD; Fernández VM; Mäntele W Biochemistry; 1993 Sep; 32(35):9199-208. PubMed ID: 8396427 [TBL] [Abstract][Full Text] [Related]
22. Estimation of microscopic redox potentials of a tetraheme protein, cytochrome c3 of Desulfovibrio vulgaris, Miyazaki F, and partial assignments of heme groups. Fan KJ; Akutsu H; Kyogoku Y; Niki K Biochemistry; 1990 Mar; 29(9):2257-63. PubMed ID: 2159795 [TBL] [Abstract][Full Text] [Related]
23. Binding of ligands originates small perturbations on the microscopic thermodynamic properties of a multicentre redox protein. Salgueiro CA; Morgado L; Fonseca B; Lamosa P; Catarino T; Turner DL; Louro RO FEBS J; 2005 May; 272(9):2251-60. PubMed ID: 15853810 [TBL] [Abstract][Full Text] [Related]
24. Homotropic and heterotropic cooperativity in the tetrahaem cytochrome c3 from Desulfovibrio vulgaris. Turner DL; Salgueiro CA; Catarino T; LeGall J; Xavier AV Biochim Biophys Acta; 1994 Aug; 1187(2):232-5. PubMed ID: 8075117 [TBL] [Abstract][Full Text] [Related]
25. Effect of hydrogen-bond networks in controlling reduction potentials in Desulfovibrio vulgaris (Hildenborough) cytochrome C3 probed by site-specific mutagenesis. Salgueiro CA; da Costa PN; Turner DL; Messias AC; van Dongen WM; Saraiva LM; Xavier AV Biochemistry; 2001 Aug; 40(32):9709-16. PubMed ID: 11583171 [TBL] [Abstract][Full Text] [Related]
26. Roles of noncoordinated aromatic residues in redox regulation of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F. Takayama Y; Harada E; Kobayashi R; Ozawa K; Akutsu H Biochemistry; 2004 Aug; 43(34):10859-66. PubMed ID: 15323546 [TBL] [Abstract][Full Text] [Related]
27. A membrane-bound cytochrome c3: a type II cytochrome c3 from Desulfovibrio vulgaris Hildenborough. Valente FM; Saraiva LM; LeGall J; Xavier AV; Teixeira M; Pereira IA Chembiochem; 2001 Dec; 2(12):895-905. PubMed ID: 11948878 [TBL] [Abstract][Full Text] [Related]
28. Structure of the tetraheme cytochrome from Desulfovibrio desulfuricans ATCC 27774: X-ray diffraction and electron paramagnetic resonance studies. Morais J; Palma PN; Frazão C; Caldeira J; LeGall J; Moura I; Moura JJ; Carrondo MA Biochemistry; 1995 Oct; 34(39):12830-41. PubMed ID: 7548038 [TBL] [Abstract][Full Text] [Related]
29. Non-equivalent natures of the coordinated imidazole rings of cytochrome c3 from D. vulgaris Miyazaki F as studied by 1H NMR. Akutsu H; Hirasawa M FEBS Lett; 1992 Aug; 308(3):264-6. PubMed ID: 1324187 [TBL] [Abstract][Full Text] [Related]
30. Individual redox characteristics and kinetic properties of the hemes in cytochromes c3: new methods of investigation. Bertrand P; Asso M; Mbarki O; Camensuli P; More C; Guigliarelli B Biochimie; 1994; 76(6):524-36. PubMed ID: 7880891 [TBL] [Abstract][Full Text] [Related]
31. Investigation of oxidation state-dependent conformational changes in Desulfovibrio vulgaris Hildenborough cytochrome c553 by two-dimensional H-NMR spectra. Blanchard L; Blackledge MJ; Marion D; Guerlesquin F FEBS Lett; 1996 Jul; 389(2):203-9. PubMed ID: 8766830 [TBL] [Abstract][Full Text] [Related]
32. Ionic strength-dependent physicochemical factors in cytochrome c3 regulating the electron transfer rate. Ohmura T; Nakamura H; Niki K; Cusanovich MA; Akutsu H Biophys J; 1998 Sep; 75(3):1483-90. PubMed ID: 9726950 [TBL] [Abstract][Full Text] [Related]
33. Redox chemistry of low-pH forms of tetrahemic cytochrome c3. Santos M; Dos Santos MM; Gonçalves ML; Costa C; Romão JC; Moura JJ J Inorg Biochem; 2006 Dec; 100(12):2009-16. PubMed ID: 17084898 [TBL] [Abstract][Full Text] [Related]
34. Reduction kinetics of the four hemes of cytochrome c3 from Desulfovibrio vulgaris by flash photolysis. Akutsu H; Hazzard JH; Bartsch RG; Cusanovich MA Biochim Biophys Acta; 1992 Dec; 1140(2):144-56. PubMed ID: 1332780 [TBL] [Abstract][Full Text] [Related]
35. Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family. Blackledge MJ; Guerlesquin F; Marion D Proteins; 1996 Feb; 24(2):178-94. PubMed ID: 8820485 [TBL] [Abstract][Full Text] [Related]
36. Effects of the Tyr64 substitution on the stability of cytochrome c553, a low oxidoreduction-potential cytochrome from Desulfovibrio vulgaris Hildenborough. Blanchard L; Dolla A; Bersch B; Forest E; Bianco P; Wall J; Marion D; Guerlesquin F Eur J Biochem; 1994 Dec; 226(2):423-32. PubMed ID: 8001560 [TBL] [Abstract][Full Text] [Related]
37. NMR redox studies of Desulfovibrio vulgaris Cytochrome c3. Electron transfer mechanisms. Moura JJ; Santos H; Moura I; LeGall J; Moore GR; Williams RJ; Xavier AV Eur J Biochem; 1982 Sep; 127(1):151-5. PubMed ID: 6291937 [TBL] [Abstract][Full Text] [Related]
38. Sequential NMR resonance assignment and secondary structure of ferrocytochrome c553 from Desulfovibrio vulgaris Hildenborough. Marion D; Guerlesquin F Biochemistry; 1992 Sep; 31(35):8171-9. PubMed ID: 1326323 [TBL] [Abstract][Full Text] [Related]