BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 1334072)

  • 1. Proton-coupled bioenergetic processes in extremely alkaliphilic bacteria.
    Krulwich TA; Guffanti AA
    J Bioenerg Biomembr; 1992 Dec; 24(6):587-99. PubMed ID: 1334072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Features of apparent nonchemiosmotic energization of oxidative phosphorylation by alkaliphilic Bacillus firmus OF4.
    Guffanti AA; Krulwich TA
    J Biol Chem; 1992 May; 267(14):9580-8. PubMed ID: 1577797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species.
    Krulwich TA; Ito M; Hicks DB; Gilmour R; Guffanti AA
    Extremophiles; 1998 Aug; 2(3):217-22. PubMed ID: 9783168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic problems of extremely alkaliphilic aerobes.
    Krulwich TA; Ito M; Gilmour R; Sturr MG; Guffanti AA; Hicks DB
    Biochim Biophys Acta; 1996 Jul; 1275(1-2):21-6. PubMed ID: 8688448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of Alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5.
    Wang Z; Hicks DB; Guffanti AA; Baldwin K; Krulwich TA
    J Biol Chem; 2004 Jun; 279(25):26546-54. PubMed ID: 15024007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis.
    Preiss L; Hicks DB; Suzuki S; Meier T; Krulwich TA
    Front Bioeng Biotechnol; 2015; 3():75. PubMed ID: 26090360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations.
    Hicks DB; Liu J; Fujisawa M; Krulwich TA
    Biochim Biophys Acta; 2010 Aug; 1797(8):1362-77. PubMed ID: 20193659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH homeostasis and bioenergetic work in alkalophiles.
    Krulwich TA; Guffanti AA; Seto-Young D
    FEMS Microbiol Rev; 1990 Jun; 6(2-3):271-8. PubMed ID: 2167108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of alkaliphilic Bacillus species: physiology and molecules.
    Krulwich TA; Ito M; Gilmour R; Hicks DB; Guffanti AA
    Adv Microb Physiol; 1998; 40():401-38. PubMed ID: 9889983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkaliphiles: 'basic' molecular problems of pH tolerance and bioenergetics.
    Krulwich TA
    Mol Microbiol; 1995 Feb; 15(3):403-10. PubMed ID: 7783613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioenergetics of alkalophilic bacteria.
    Krulwich TA
    J Membr Biol; 1986; 89(2):113-25. PubMed ID: 2871195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transduction in the methanogen Methanococcus voltae is based on a sodium current.
    Dybas M; Konisky J
    J Bacteriol; 1992 Sep; 174(17):5575-83. PubMed ID: 1324904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.
    Dimroth P; Cook GM
    Adv Microb Physiol; 2004; 49():175-218. PubMed ID: 15518831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na(+)-coupled alternative to H(+)-coupled primary transport systems in bacteria.
    Dimroth P
    Bioessays; 1991 Sep; 13(9):463-8. PubMed ID: 1665692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active transport of Ca2+ in bacteria: bioenergetics and function.
    Devés R; Brodie AF
    Mol Cell Biochem; 1981 Apr; 36(2):65-84. PubMed ID: 6113540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Na+ cycle of extreme alkalophiles: a secondary Na+/H+ antiporter and Na+/solute symporters.
    Krulwich TA; Guffanti AA
    J Bioenerg Biomembr; 1989 Dec; 21(6):663-77. PubMed ID: 2687260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of Proton Motive Force Under Low-Aeration Alkaline Conditions in Alkaliphilic Bacteria.
    Matsuno T; Goto T; Ogami S; Morimoto H; Yamazaki K; Inoue N; Matsuyama H; Yoshimune K; Yumoto I
    Front Microbiol; 2018; 9():2331. PubMed ID: 30333809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of cytoplasmic pH regulation in alkaliphilic strains of Bacillus.
    Krulwich TA; Ito M; Gilmour R; Guffanti AA
    Extremophiles; 1997 Nov; 1(4):163-9. PubMed ID: 9680297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The enigma of the alkaliphile.
    Grant WD
    Microbiol Sci; 1987 Aug; 4(8):251-5. PubMed ID: 3153616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.