These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 1334237)
1. Further studies of the mechanism(s) of polyunsaturated-fatty-acid-mediated increases in intracellular cAMP formation in N1E-115 neuroblastoma cells. Murphy MG; Byczko Z Neurochem Res; 1992 Nov; 17(11):1069-77. PubMed ID: 1334237 [TBL] [Abstract][Full Text] [Related]
2. Non-eicosanoid functions of essential fatty acids: regulation of adenosine-related functions in cultured neuroblastoma cells. Murphy MG; Byczko Z Adv Exp Med Biol; 1992; 318():91-102. PubMed ID: 1322028 [TBL] [Abstract][Full Text] [Related]
3. Effects of adenosine analogues on basal, prostaglandin E1- and forskolin-stimulated cyclic AMP formation in intact neuroblastoma cells. Murphy MG; Byczko Z Biochem Pharmacol; 1989 Oct; 38(19):3289-95. PubMed ID: 2554919 [TBL] [Abstract][Full Text] [Related]
4. Effects of membrane polyunsaturated fatty acids on opiate peptide inhibition of basal and prostaglandin E1-stimulated cyclic AMP formation in intact N1E-115 neuroblastoma cells. Murphy MG; Moak CM; Rao BG Biochem Pharmacol; 1987 Dec; 36(23):4079-84. PubMed ID: 2825714 [TBL] [Abstract][Full Text] [Related]
5. Effects of membrane polyunsaturated fatty acids on adenosine receptor function in intact N1E-115 neuroblastoma cells. Murphy MG; Byczko Z Biochem Cell Biol; 1990 Jan; 68(1):392-5. PubMed ID: 2161675 [TBL] [Abstract][Full Text] [Related]
6. Effects of exogenous linoleic acid on fatty acid composition, receptor-mediated cAMP formation, and transport functions in rat astrocytes in primary culture. Murphy MG Neurochem Res; 1995 Nov; 20(11):1365-75. PubMed ID: 8786824 [TBL] [Abstract][Full Text] [Related]
7. Adenosine-dependent regulation of cyclic AMP accumulation in primary cultures of rat astrocytes and neurons. Murphy MG; Moak CM; Byczko Z; MacDonald WF J Neurosci Res; 1991 Dec; 30(4):631-40. PubMed ID: 1664862 [TBL] [Abstract][Full Text] [Related]
8. Adenosine receptors activate adenylate cyclase and enhance secretion from bovine adrenal chromaffin cells in the presence of forskolin. Chern YJ; Kim KT; Slakey LL; Westhead EW J Neurochem; 1988 May; 50(5):1484-93. PubMed ID: 2834514 [TBL] [Abstract][Full Text] [Related]
9. Beta,gamma-methylene ATP-induced cAMP formation in C6Bu-1 cells: involvement of local metabolism and subsequent stimulation of adenosine A2B receptor. Ohkubo S; Kumazawa K; Sagawa K; Kimura J; Matsuoka I J Neurochem; 2001 Feb; 76(3):872-80. PubMed ID: 11158259 [TBL] [Abstract][Full Text] [Related]
10. Forskolin and phosphodiesterase inhibitors release adenosine but inhibit morphine-evoked release of adenosine from spinal cord synaptosomes. Nicholson D; White TD; Sawynok J Can J Physiol Pharmacol; 1991 Jun; 69(6):877-85. PubMed ID: 1717120 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of pig aortic smooth muscle cell DNA synthesis by selective type III and type IV cyclic AMP phosphodiesterase inhibitors. Souness JE; Hassall GA; Parrott DP Biochem Pharmacol; 1992 Sep; 44(5):857-66. PubMed ID: 1326964 [TBL] [Abstract][Full Text] [Related]
13. Studies of the regulation of basal adenylate cyclase activity by membrane polyunsaturated fatty acids in cultured neuroblastoma. Murphy MG J Neurochem; 1986 Jul; 47(1):245-53. PubMed ID: 3011993 [TBL] [Abstract][Full Text] [Related]
14. Effects of acute and chronic ethanol on cyclic AMP accumulation in NG108-15 cells: differential dependence of changes on extracellular adenosine. Kelly E; Harrison PK; Williams RJ Br J Pharmacol; 1995 Apr; 114(7):1433-41. PubMed ID: 7541691 [TBL] [Abstract][Full Text] [Related]
15. Modulation of cyclic AMP metabolism by protein kinase C in PC18 cells. Yingling JD; Fuller LZ; Jackson BA Neurosci Lett; 1994 Jan; 166(2):157-60. PubMed ID: 8177492 [TBL] [Abstract][Full Text] [Related]
16. Involvement of P1 receptors in the effect of forskolin on cyclic AMP accumulation and export in PC12 cells. Florio C; Frausin F; Vertua R; Gaion RM Biochem Pharmacol; 1999 Feb; 57(4):355-64. PubMed ID: 9933023 [TBL] [Abstract][Full Text] [Related]
17. Occupancy of adenosine receptors raises cyclic AMP alone and in synergy with occupancy of chemoattractant receptors and inhibits membrane depolarization. Cronstein BN; Kramer SB; Rosenstein ED; Korchak HM; Weissmann G; Hirschhorn R Biochem J; 1988 Jun; 252(3):709-15. PubMed ID: 2844154 [TBL] [Abstract][Full Text] [Related]
18. Involvement of CD73, equilibrative nucleoside transporters and inosine in rhythm and conduction disturbances mediated by adenosine A1 and A2A receptors in the developing heart. Robin E; Sabourin J; Marcillac F; Raddatz E J Mol Cell Cardiol; 2013 Oct; 63():14-25. PubMed ID: 23837961 [TBL] [Abstract][Full Text] [Related]
19. The effect of relaxin on cyclic adenosine 3',5'-monophosphate concentrations in human endometrial glandular epithelial cells. Chen GA; Huang JR; Tseng L Biol Reprod; 1988 Oct; 39(3):519-25. PubMed ID: 2848594 [TBL] [Abstract][Full Text] [Related]
20. Chemoattractant-induced release of elastase by tumor necrosis factor-primed human neutrophils: auto-regulation by endogenous adenosine. Ottonello L; Amelotti M; Barbera P; Dapino P; Mancini M; Tortolina G; Dallegri F Inflamm Res; 1999 Dec; 48(12):637-42. PubMed ID: 10669115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]