These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1334431)

  • 1. Buried water in homologous serine proteases.
    Sreenivasan U; Axelsen PH
    Biochemistry; 1992 Dec; 31(51):12785-91. PubMed ID: 1334431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inclusion of conserved buried water molecules in the model structure of rat submaxillary kallikrein.
    Henriques EF; Ramos MJ; Reynolds CA
    J Comput Aided Mol Des; 1997 Nov; 11(6):547-56. PubMed ID: 9491347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural model for the prostate disease marker, human prostate-specific antigen.
    Villoutreix BO; Getzoff ED; Griffin JH
    Protein Sci; 1994 Nov; 3(11):2033-44. PubMed ID: 7535613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein modelling using a chimera reference protein derived from exons.
    Kajihara A; Komooka H; Kamiya K; Umeyama H
    Protein Eng; 1993 Aug; 6(6):615-20. PubMed ID: 8234231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster analysis of consensus water sites in thrombin and trypsin shows conservation between serine proteases and contributions to ligand specificity.
    Sanschagrin PC; Kuhn LA
    Protein Sci; 1998 Oct; 7(10):2054-64. PubMed ID: 9792092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved water molecules in the specificity pocket of serine proteases and the molecular mechanism of Na+ binding.
    Krem MM; Di Cera E
    Proteins; 1998 Jan; 30(1):34-42. PubMed ID: 9443338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships.
    Bode W; Turk D; Karshikov A
    Protein Sci; 1992 Apr; 1(4):426-71. PubMed ID: 1304349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for diversity of substrate specificity among members of the chymase family of serine proteases.
    Solivan S; Selwood T; Wang ZM; Schechter NM
    FEBS Lett; 2002 Feb; 512(1-3):133-8. PubMed ID: 11852067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling of the serine-proteinase fold by X-ray and neutron scattering and sedimentation analyses: occurrence of the fold in factor D of the complement system.
    Perkins SJ; Smith KF; Kilpatrick JM; Volanakis JE; Sim RB
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):87-99. PubMed ID: 8216242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unexpected crucial role of residue 225 in serine proteases.
    Guinto ER; Caccia S; Rose T; Fütterer K; Waksman G; Di Cera E
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1852-7. PubMed ID: 10051558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms.
    Kaslik G; Westler WM; Gráf L; Markley JL
    Arch Biochem Biophys; 1999 Feb; 362(2):254-64. PubMed ID: 9989934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional and structural characterization of Vibrio cholerae extracellular serine protease B, VesB.
    Gadwal S; Korotkov KV; Delarosa JR; Hol WG; Sandkvist M
    J Biol Chem; 2014 Mar; 289(12):8288-98. PubMed ID: 24459146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent structure in crystals of trypsin determined by X-ray and neutron diffraction.
    Finer-Moore JS; Kossiakoff AA; Hurley JH; Earnest T; Stroud RM
    Proteins; 1992 Mar; 12(3):203-22. PubMed ID: 1557349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of serine proteases derived from steric comparisons of their active sites.
    Barth A; Wahab M; Brandt W; Frost K
    Drug Des Discov; 1993; 10(4):297-317. PubMed ID: 8148470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural features of a snake venom thrombin-like enzyme: thrombin and trypsin on a single catalytic platform?
    Castro HC; Silva DM; Craik C; Zingali RB
    Biochim Biophys Acta; 2001 Jun; 1547(2):183-95. PubMed ID: 11410274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent structure of human haptoglobin: a serine protease homolog.
    Kurosky A; Barnett DR; Lee TH; Touchstone B; Hay RE; Arnott MS; Bowman BH; Fitch WM
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3388-92. PubMed ID: 6997877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of recombinant human tissue kallikrein at 2.0 A resolution.
    Katz BA; Liu B; Barnes M; Springman EB
    Protein Sci; 1998 Apr; 7(4):875-85. PubMed ID: 9568894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the S' subsites in serine protease catalysis. Active-site mapping of rat chymotrypsin, rat trypsin, alpha-lytic protease, and cercarial protease from Schistosoma mansoni.
    Schellenberger V; Turck CW; Rutter WJ
    Biochemistry; 1994 Apr; 33(14):4251-7. PubMed ID: 8155642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites.
    Cooley J; Takayama TK; Shapiro SD; Schechter NM; Remold-O'Donnell E
    Biochemistry; 2001 Dec; 40(51):15762-70. PubMed ID: 11747453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.