BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 1334434)

  • 1. Protein conformational perturbations affect the photoreduction of native cytochrome c peroxidase (III) at alkaline pH.
    Wang J; Zhu H; Ondrias MR
    Biochemistry; 1992 Dec; 31(51):12847-54. PubMed ID: 1334434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase.
    Smulevich G; Miller MA; Kraut J; Spiro TG
    Biochemistry; 1991 Oct; 30(39):9546-58. PubMed ID: 1654102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and photolability of low-spin ferrous cytochrome c peroxidase at alkaline pH.
    Wang JL; Boldt NJ; Ondrias MR
    Biochemistry; 1992 Jan; 31(3):867-78. PubMed ID: 1310047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of protein environment on magnetic circular dichroism spectral properties of ferric and ferrous ligand complexes of yeast cytochrome c peroxidase.
    Pond AE; Sono M; Elenkova EA; Goodin DB; English AM; Dawson JH
    Biospectroscopy; 1999; 5(5 Suppl):S42-52. PubMed ID: 10512537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome c peroxidase complexed with cytochrome c has an unperturbed heme moiety.
    Wang J; Larsen RW; Moench SJ; Satterlee JD; Rousseau DL; Ondrias MR
    Biochemistry; 1996 Jan; 35(2):453-63. PubMed ID: 8555215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic circular dichroism studies of the active site heme coordination sphere of exogenous ligand-free ferric cytochrome c peroxidase from yeast: effects of sample history and pH.
    Pond AE; Sono M; Elenkova EA; McRee DE; Goodin DB; English AM; Dawson JH
    J Inorg Biochem; 1999 Sep; 76(3-4):165-74. PubMed ID: 10605835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering cytochrome c peroxidase into cytochrome P450: a proximal effect on heme-thiolate ligation.
    Sigman JA; Pond AE; Dawson JH; Lu Y
    Biochemistry; 1999 Aug; 38(34):11122-9. PubMed ID: 10460168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of arginine-48 replacement on the reaction between cytochrome c peroxidase and hydrogen peroxide.
    Vitello LB; Erman JE; Miller MA; Wang J; Kraut J
    Biochemistry; 1993 Sep; 32(37):9807-18. PubMed ID: 8396973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of interprotein electron transfer by Trp 191 of cytochrome c peroxidase.
    Miller MA; Vitello L; Erman JE
    Biochemistry; 1995 Sep; 34(37):12048-58. PubMed ID: 7547943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a ruthenium-cytochrome c derivative to measure electron transfer to the radical cation and oxyferryl heme in cytochrome c peroxidase.
    Wang K; Mei H; Geren L; Miller MA; Saunders A; Wang X; Waldner JL; Pielak GJ; Durham B; Millett F
    Biochemistry; 1996 Nov; 35(47):15107-19. PubMed ID: 8942678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge reversal of a critical active-site residue of cytochrome-c peroxidase: characterization of the Arg48-->Glu variant.
    Bujons J; Dikiy A; Ferrer JC; Banci L; Mauk AG
    Eur J Biochem; 1997 Jan; 243(1-2):72-84. PubMed ID: 9030724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field and conformational effects of cytochrome c and solvent on cytochrome c peroxidase studied by high-resolution fluorescence spectroscopy.
    Anni H; Vanderkooi JM; Sharp KA; Yonetani T; Hopkins SC; Herenyi L; Fidy J
    Biochemistry; 1994 Mar; 33(12):3475-86. PubMed ID: 8142344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO recombination in cytochrome c peroxidase: effect of the local heme environment on CO binding explored through site-directed mutagenesis.
    Miller MA; Coletta M; Mauro JM; Putnam LD; Farnum MF; Kraut J; Traylor TG
    Biochemistry; 1990 Feb; 29(7):1777-91. PubMed ID: 2158813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of active site and surface mutations on the reduction potential of yeast cytochrome c peroxidase and spectroscopic properties of the oxidized and reduced enzyme.
    DiCarlo CM; Vitello LB; Erman JE
    J Inorg Biochem; 2007 Apr; 101(4):603-13. PubMed ID: 17275914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photooxidation of Trp-191 in cytochrome c peroxidase by ruthenium-cytochrome c derivatives.
    Liu RQ; Hahm S; Miller M; Durham B; Millett F
    Biochemistry; 1995 Jan; 34(3):973-83. PubMed ID: 7827055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacement of the axial histidine ligand with imidazole in cytochrome c peroxidase. 2. Effects on heme coordination and function.
    Hirst J; Wilcox SK; Ai J; Moënne-Loccoz P; Loehr TM; Goodin DB
    Biochemistry; 2001 Feb; 40(5):1274-83. PubMed ID: 11170453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction potential of yeast cytochrome c peroxidase and three distal histidine mutants: dependence on pH.
    DiCarlo CM; Vitello LB; Erman JE
    J Inorg Biochem; 2011 Apr; 105(4):532-7. PubMed ID: 21334283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme pocket interactions in cytochrome c peroxidase studied by site-directed mutagenesis and resonance Raman spectroscopy.
    Smulevich G; Mauro JM; Fishel LA; English AM; Kraut J; Spiro TG
    Biochemistry; 1988 Jul; 27(15):5477-85. PubMed ID: 2846039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the recombinant enzyme from Escherichia coli, and an Asp-235----Asn-235 mutant.
    Satterlee JD; Erman JE; Mauro JM; Kraut J
    Biochemistry; 1990 Sep; 29(37):8797-804. PubMed ID: 2176836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of cytochrome c peroxidase by resonance Raman scattering.
    Dasgupta S; Rousseau DL; Anni H; Yonetani T
    J Biol Chem; 1989 Jan; 264(1):654-62. PubMed ID: 2535849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.