These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 13345)
1. Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole. Duhm J; Becker BF Pflugers Arch; 1977 Jan; 367(3):211-9. PubMed ID: 13345 [TBL] [Abstract][Full Text] [Related]
2. Studies on the lithium transport across the red cell membrane. III. Factors contributing to the intraindividual variability of the in vitro Li+ distribution across the human red cell membrane. Duhm J; Becker BF Pflugers Arch; 1977 Apr; 368(3):203-8. PubMed ID: 559291 [TBL] [Abstract][Full Text] [Related]
3. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes. Duhm J; Becker BF J Membr Biol; 1979 Dec; 51(3-4):263-86. PubMed ID: 43898 [TBL] [Abstract][Full Text] [Related]
4. Lithium transport pathways in human red blood cells. Pandey GN; Sarkadi B; Haas M; Gunn RB; Davis JM; Tosteson DC J Gen Physiol; 1978 Aug; 72(2):233-47. PubMed ID: 690597 [TBL] [Abstract][Full Text] [Related]
5. Studies on the lithium transport across the red cell membrane. I. Li+ uphill transport by the Na+-dependent Li+ counter-transport system of human erythrocytes. Duhm J; Eisenried F; Becker BF; Greil W Pflugers Arch; 1976 Jul; 364(2):147-55. PubMed ID: 986623 [TBL] [Abstract][Full Text] [Related]
6. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell. Wiley JS; Cooper RA J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437 [TBL] [Abstract][Full Text] [Related]
7. Studies on lithium transport across the red cell membrane. VI. Properties of a sulfhydryl group involved in ouabain-resistant Na+-Li+ (and Na+-Na+) exchange in human and bovine erythrocytes. Becker BF; Duhm J J Membr Biol; 1979 Dec; 51(3-4):287-310. PubMed ID: 231659 [TBL] [Abstract][Full Text] [Related]
8. Abnormal lithium and sodium transport in erythrocytes of a manic patient and some members of his family. Pandey GN; Ostrow DG; Haas M; Dorus E; Casper RC; Davis JM; Tosteson DC Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3607-11. PubMed ID: 269417 [TBL] [Abstract][Full Text] [Related]
9. Studies on the lithium transport across the red cell membrane. I.V. Interindividual variations in the Na+-dependent Li+ countertransport system of human erythrocytes. Duhm J; Becker BF Pflugers Arch; 1977 Sep; 370(3):211-9. PubMed ID: 563051 [No Abstract] [Full Text] [Related]
10. Lithium efflux through the Na/K pump in human erythrocytes. Dunham PB; Senyk O Proc Natl Acad Sci U S A; 1977 Jul; 74(7):3099-103. PubMed ID: 268658 [TBL] [Abstract][Full Text] [Related]
11. The ATP dependence of a ouabain-sensitive sodium efflux activated by external sodium, potassium and lithium in human red cells. Beaugé LA; Del Campillo E Biochim Biophys Acta; 1976 May; 433(3):547-54. PubMed ID: 1276192 [TBL] [Abstract][Full Text] [Related]
12. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. Baker PF; Blaustein MP; Keynes RD; Manil J; Shaw TI; Steinhardt RA J Physiol; 1969 Feb; 200(2):459-96. PubMed ID: 5812424 [TBL] [Abstract][Full Text] [Related]
13. Peripheral effects of thyroid hormones: alteration of intracellular Na-concentration, ouabain-sensitive Na-transport, and Na-Li countertransport in human red blood cells. Sütterlin U; Gless KH; Schaz K; Hüfner M; Schütz V; Hunstein W Klin Wochenschr; 1984 Jun; 62(12):598-601. PubMed ID: 6090760 [TBL] [Abstract][Full Text] [Related]
14. Transport pathways for lithium ions in neuroblastoma x glioma hybrid cells at 'therapeutic' concentrations of Li+. Reiser G; Duhm J Brain Res; 1982 Dec; 252(2):247-58. PubMed ID: 7150952 [TBL] [Abstract][Full Text] [Related]
15. Effect of membrane potential and internal pH on active sodium-potassium transport and on ATP content in high-potassium sheep erythrocytes. Zade-Oppen AM; Schooler JM; Cook P; Tosteson DC Biochim Biophys Acta; 1979 Aug; 555(2):285-98. PubMed ID: 38843 [TBL] [Abstract][Full Text] [Related]
16. Cotransport of lithium and potassium in human red cells. Canessa M; Bize I; Adragna N; Tosteson D J Gen Physiol; 1982 Jul; 80(1):149-68. PubMed ID: 7119728 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of the inhibition of the Na-K pump by external sodium. Sachs JR J Physiol; 1977 Jan; 264(2):449-70. PubMed ID: 839462 [TBL] [Abstract][Full Text] [Related]
18. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump. Dissing S; Hoffman JF J Gen Physiol; 1990 Jul; 96(1):167-93. PubMed ID: 2212979 [TBL] [Abstract][Full Text] [Related]
19. Interindividual differences in the Na+-dependent Li+ countertransport system and in the Li+ distribution ratio across the red cell membrane among Li+-treated patients. Greil W; Eisenried F; Becker BF; Duhm J Psychopharmacology (Berl); 1977 Jun; 53(1):19-26. PubMed ID: 407610 [No Abstract] [Full Text] [Related]
20. Kinetics and stoichiometry of Na-dependent Li transport in human red blood cells. Sarkadi B; Alifimoff JK; Gunn RB; Tosteson DC J Gen Physiol; 1978 Aug; 72(2):249-65. PubMed ID: 690598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]