BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1335254)

  • 1. Effect of gallium on the tyrosyl radical of the iron-dependent M2 subunit of ribonucleotide reductase.
    Narasimhan J; Antholine WE; Chitambar CR
    Biochem Pharmacol; 1992 Dec; 44(12):2403-8. PubMed ID: 1335254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting iron-dependent DNA synthesis with gallium and transferrin-gallium.
    Chitambar CR; Narasimhan J
    Pathobiology; 1991; 59(1):3-10. PubMed ID: 1645976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of leukemic HL60 cell growth by transferrin-gallium: effects on ribonucleotide reductase and demonstration of drug synergy with hydroxyurea.
    Chitambar CR; Matthaeus WG; Antholine WE; Graff K; O'Brien WJ
    Blood; 1988 Dec; 72(6):1930-6. PubMed ID: 3058232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of ribonucleotide reductase by gallium in murine leukemic L1210 cells.
    Chitambar CR; Narasimhan J; Guy J; Sem DS; O'Brien WJ
    Cancer Res; 1991 Nov; 51(22):6199-201. PubMed ID: 1933878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tyrosyl free radical in ribonucleotide reductase.
    Gräslund A; Sahlin M; Sjöberg BM
    Environ Health Perspect; 1985 Dec; 64():139-49. PubMed ID: 3007085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide. Relationship to cytostasis induced in tumor cells by cytotoxic macrophages.
    Lepoivre M; Flaman JM; Bobé P; Lemaire G; Henry Y
    J Biol Chem; 1994 Aug; 269(34):21891-7. PubMed ID: 7520445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPR study of the mixed-valent diiron sites in mouse and herpes simplex virus ribonucleotide reductases. Effect of the tyrosyl radical on structure and reactivity of the diferric center.
    Davydov RM; Davydov A; Ingemarson R; Thelander L; Ehrenberg A; Gräslund A
    Biochemistry; 1997 Jul; 36(30):9093-100. PubMed ID: 9230041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic interaction between the tyrosyl free radical and the antiferromagnetically coupled iron center in ribonucleotide reductase.
    Sahlin M; Petersson L; Gräslund A; Ehrenberg A; Sjöberg BM; Thelander L
    Biochemistry; 1987 Aug; 26(17):5541-8. PubMed ID: 2823883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of drug resistance to gallium nitrate through modulation of cellular iron uptake.
    Chitambar CR; Zivkovic-Gilgenbach Z; Narasimhan J; Antholine WE
    Cancer Res; 1990 Aug; 50(15):4468-72. PubMed ID: 2164439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation of the tyrosyl radical in Salmonella typhimurium class Ib ribonucleotide reductase determined by high field EPR of R2F single crystals.
    Galander M; Uppsten M; Uhlin U; Lendzian F
    J Biol Chem; 2006 Oct; 281(42):31743-52. PubMed ID: 16854982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of the tyrosyl radical in mouse ribonucleotide reductase by (-)-epicatechin.
    Schroeder P; Voevodskaya N; Klotz LO; Brenneisen P; Gräslund A; Sies H
    Biochem Biophys Res Commun; 2005 Jan; 326(3):614-7. PubMed ID: 15596143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The active form of the R2F protein of class Ib ribonucleotide reductase from Corynebacterium ammoniagenes is a diferric protein.
    Huque Y; Fieschi F; Torrents E; Gibert I; Eliasson R; Reichard P; Sahlin M; Sjoberg BM
    J Biol Chem; 2000 Aug; 275(33):25365-71. PubMed ID: 10801858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PELDOR study on the tyrosyl radicals in the R2 protein of mouse ribonucleotide reductase.
    Biglino D; Schmidt PP; Reijerse EJ; Lubitz W
    Phys Chem Chem Phys; 2006 Jan; 8(1):58-62. PubMed ID: 16482244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase.
    Lassmann G; Curtis J; Liermann B; Mason RP; Eling TE
    Arch Biochem Biophys; 1993 Jan; 300(1):132-6. PubMed ID: 8380961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron paramagnetic resonance and nuclear magnetic resonance studies of class I ribonucleotide reductase.
    Gräslund A; Sahlin M
    Annu Rev Biophys Biomol Struct; 1996; 25():259-86. PubMed ID: 8800471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High valent iron oxo intermediates might be involved during activation of ribonucleotide reductase: single oxygen atom donors generate the tyrosyl radical.
    Fontecave M; Gerez C; Atta M; Jeunet A
    Biochem Biophys Res Commun; 1990 Apr; 168(2):659-64. PubMed ID: 2185755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymic modification of a tyrosine residue to a stable free radical in ribonucleotide reductase.
    Barlow T; Eliasson R; Platz A; Reichard P; Sjöberg BM
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1492-5. PubMed ID: 6300856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EPR studies on a stable sulfinyl radical observed in the iron-oxygen-reconstituted Y177F/I263C protein R2 double mutant of ribonucleotide reductase from mouse.
    Adrait A; Ohrström M; Barra AL; Thelander L; Gräslund A
    Biochemistry; 2002 May; 41(20):6510-6. PubMed ID: 12009915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosyl free radical formation in the small subunit of mouse ribonucleotide reductase.
    Ochiai E; Mann GJ; Gräslund A; Thelander L
    J Biol Chem; 1990 Sep; 265(26):15758-61. PubMed ID: 2203785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gallium(III) and iron(III) complexes of alpha-N-heterocyclic thiosemicarbazones: synthesis, characterization, cytotoxicity, and interaction with ribonucleotide reductase.
    Kowol CR; Berger R; Eichinger R; Roller A; Jakupec MA; Schmidt PP; Arion VB; Keppler BK
    J Med Chem; 2007 Mar; 50(6):1254-65. PubMed ID: 17315858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.