These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Neurophysiological substrates of context conditioning in Hermissenda suggest a temporally invariant form of activity-dependent neuronal facilitation. Talk AC; Muzzio IA; Matzel LD Neurobiol Learn Mem; 1999 Sep; 72(2):95-117. PubMed ID: 10438650 [TBL] [Abstract][Full Text] [Related]
6. The interstimulus interval and classical conditioning in the marine snail Hermissenda crassicornis. Lederhendler II; Alkon DL Behav Brain Res; 1989 Oct; 35(1):75-80. PubMed ID: 2803546 [TBL] [Abstract][Full Text] [Related]
7. Training and testing determinants of short-term associative suppression of phototaxic behavior in Hermissenda. Grover L; Farley J; Vold L Behav Neural Biol; 1987 May; 47(3):275-306. PubMed ID: 3606529 [TBL] [Abstract][Full Text] [Related]
8. In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes. Farley J; Alkon DL J Neurophysiol; 1987 Jun; 57(6):1639-68. PubMed ID: 3598626 [TBL] [Abstract][Full Text] [Related]
9. Acquisition of conditioned associations in Hermissenda: additive effects of contiguity and the forward interstimulus interval. Matzel LD; Schreurs BG; Lederhendler I; Alkon DL Behav Neurosci; 1990 Aug; 104(4):597-606. PubMed ID: 2206429 [TBL] [Abstract][Full Text] [Related]
10. Associatively reduced withdrawal from shadows in Hermissenda: a direct behavioral analog of photoreceptor responses to brief light steps. Lederhendler II; Alkon DL Behav Neural Biol; 1987 May; 47(3):227-49. PubMed ID: 3606526 [TBL] [Abstract][Full Text] [Related]
11. Postsynaptic calcium, but not cumulative depolarization, is necessary for the induction of associative plasticity in Hermissenda. Matzel LD; Rogers RF J Neurosci; 1993 Dec; 13(12):5029-40. PubMed ID: 8254359 [TBL] [Abstract][Full Text] [Related]
12. Sequential changes of potassium currents in Hermissenda type B photoreceptor during early stages of classical conditioning. Lederhendler II; Collin C; Alkon DL Neurosci Lett; 1990 Mar; 110(1-2):28-33. PubMed ID: 2325887 [TBL] [Abstract][Full Text] [Related]
13. Correlated receptor and motorneuron changes during retention of associative learning of Hermissenda crassicornis. Takeda T; Alkon DL Comp Biochem Physiol A Comp Physiol; 1982; 73(2):151-7. PubMed ID: 6128102 [TBL] [Abstract][Full Text] [Related]
14. Interactive contributions of intracellular calcium and protein phosphatases to massed-trials learning deficits in Hermissenda. Muzzio IA; Ramirez RR; Talk AC; Matzel LD Behav Neurosci; 1999 Feb; 113(1):103-17. PubMed ID: 10197910 [TBL] [Abstract][Full Text] [Related]
15. Calcium waves and closure of potassium channels in response to GABA stimulation in Hermissenda type B photoreceptors. Blackwell KT J Neurophysiol; 2002 Feb; 87(2):776-92. PubMed ID: 11826046 [TBL] [Abstract][Full Text] [Related]
16. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis. Blackwell KT; Alkon DL Brain Res; 1999 Mar; 822(1-2):114-25. PubMed ID: 10082889 [TBL] [Abstract][Full Text] [Related]
17. Variations in learning reflect individual differences in sensory function and synaptic integration. Matzel LD; Muzzio IA; Talk AC Behav Neurosci; 1996 Oct; 110(5):1084-95. PubMed ID: 8919011 [TBL] [Abstract][Full Text] [Related]
19. Potentiation of phototactic suppression in Hermissenda by compound conditioning results in potentiated excitability changes in type B and A photoreceptors. Farley J; Jin I Behav Neurosci; 1997 Apr; 111(2):309-19. PubMed ID: 9106672 [TBL] [Abstract][Full Text] [Related]
20. Protein synthesis-dependent memory and neuronal enhancement in Hermissenda are contingent on parameters of training and retention. Ramirez RR; Gandhi CC; Muzzio IA; Matzel LD Learn Mem; 1998; 4(6):462-77. PubMed ID: 10701872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]