These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 1335270)
41. GABA-induced potentiation of neuronal excitability occurs during contiguous pairings with intracellular calcium elevation. Matzel LD; Alkon DL Brain Res; 1991 Jul; 554(1-2):77-84. PubMed ID: 1718551 [TBL] [Abstract][Full Text] [Related]
42. Behavioral and neural bases of noncoincidence learning in Hermissenda. Britton G; Farley J J Neurosci; 1999 Oct; 19(20):9126-32. PubMed ID: 10516330 [TBL] [Abstract][Full Text] [Related]
43. Potentiation of phototactic suppression in Hermissenda by a chemosensory stimulus during compound conditioning. Farley J; Reasoner H; Janssen M Behav Neurosci; 1997 Apr; 111(2):320-41. PubMed ID: 9106673 [TBL] [Abstract][Full Text] [Related]
44. Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior. Clark RE; Zhang AA; Lavond DG Behav Neurosci; 1992 Dec; 106(6):879-88. PubMed ID: 1335267 [TBL] [Abstract][Full Text] [Related]
45. Linear relationship between the maintenance of hippocampal long-term potentiation and retention of an associative memory. Doyère V; Laroche S Hippocampus; 1992 Jan; 2(1):39-48. PubMed ID: 1308172 [TBL] [Abstract][Full Text] [Related]
46. Contingency learning and causal detection in Hermissenda: II. Cellular mechanisms. Farley J Behav Neurosci; 1987 Feb; 101(1):28-56. PubMed ID: 2435301 [TBL] [Abstract][Full Text] [Related]
47. Membrane changes in a single photoreceptor cause associative learning in Hermissenda. Farley J; Richards WG; Ling LJ; Liman E; Alkon DL Science; 1983 Sep; 221(4616):1201-3. PubMed ID: 6612335 [TBL] [Abstract][Full Text] [Related]
48. Latent inhibition in the developing rat: an examination of context-specific effects. Yap CS; Richardson R Dev Psychobiol; 2005 Jul; 47(1):55-65. PubMed ID: 15959895 [TBL] [Abstract][Full Text] [Related]
49. Voltage-dependent calcium and potassium ion conductances: a contingency mechanism for an associative learning model. Alkon DL Science; 1979 Aug; 205(4408):810-6. PubMed ID: 223244 [TBL] [Abstract][Full Text] [Related]
50. Neuronal mechanisms of reconsolidation of an associative aversive skill to food in the common snail. Kozyrev SA; Nikitin VP Neurosci Behav Physiol; 2010 Sep; 40(7):715-22. PubMed ID: 20635219 [TBL] [Abstract][Full Text] [Related]
51. Primary changes of membrane currents during retention of associative learning. Alkon DL; Lederhendler I; Shoukimas JJ Science; 1982 Feb; 215(4533):693-5. PubMed ID: 7058334 [TBL] [Abstract][Full Text] [Related]
52. Classical conditioning of Hermissenda: origin of a new response. Lederhendler II; Gart S; Alkon DL J Neurosci; 1986 May; 6(5):1325-31. PubMed ID: 3711982 [TBL] [Abstract][Full Text] [Related]
54. Changes in Membrane and Threshold Potentials of Command Neurons in Terrestrial Snail during Development of a Conditioned Situational Defensive Reflex. Muranova LN; Andrianov VV; Bogodvid TK; Deryabina IB; Lazutin SA; Gainutdinov KL Bull Exp Biol Med; 2020 Apr; 168(6):709-712. PubMed ID: 32328938 [TBL] [Abstract][Full Text] [Related]
55. Input and output changes of an identified neural pathway are correlated with associative learning in Hermissenda. Goh Y; Lederhendler I; Alkon DL J Neurosci; 1985 Feb; 5(2):536-43. PubMed ID: 3973682 [TBL] [Abstract][Full Text] [Related]
56. Two different biological configurations for long-term memory. Epstein HT; Kuzirian AM; Child FM; Alkon DL Neurobiol Learn Mem; 2004 Jan; 81(1):12-8. PubMed ID: 14670354 [TBL] [Abstract][Full Text] [Related]
57. Active avoidance learning in zebrafish (Danio rerio)--the role of sensory modality and inter-stimulus interval. Morin C; de Souza Silva MA; Müller CP; Hardigan P; Spieler RE Behav Brain Res; 2013 Jul; 248():141-3. PubMed ID: 23603556 [TBL] [Abstract][Full Text] [Related]
58. Alterations in membrane potential after axotomy at different distances from the soma of an identified neuron and the effect of depolarization on neurite outgrowth and calcium channel expression. Berdan RC; Easaw JC; Wang R J Neurophysiol; 1993 Jan; 69(1):151-64. PubMed ID: 8381855 [TBL] [Abstract][Full Text] [Related]
59. Cold shock before associative conditioning blocks memory retrieval, but cold shock after conditioning blocks memory retention in Caenorhabditis elegans. Morrison GE; van der Kooy D Behav Neurosci; 1997 Jun; 111(3):564-78. PubMed ID: 9189271 [TBL] [Abstract][Full Text] [Related]
60. Invertebrate learning and memory: from behavior to molecules. Carew TJ; Sahley CL Annu Rev Neurosci; 1986; 9():435-87. PubMed ID: 2423010 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]