These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1335285)

  • 61. Production of superoxide and activity of superoxide dismutase in rabbit epididymal spermatozoa.
    Holland MK; Alvarez JG; Storey BT
    Biol Reprod; 1982 Dec; 27(5):1109-18. PubMed ID: 6297628
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Oxidation of reduced Cu,Zn superoxide dismutase by molecular oxygen. A kinetic study.
    Viglino P; Scarpa M; Coin F; Rotilio G; Rigo A
    Biochem J; 1986 Jul; 237(1):305-8. PubMed ID: 3800887
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transition metal complexes bearing flexible N₃ or N₃O donor ligands: reactivity toward superoxide radical anion and hydrogen peroxide.
    Pap JS; Kripli B; Bors I; Bogáth D; Giorgi M; Kaizer J; Speier G
    J Inorg Biochem; 2012 Dec; 117():60-70. PubMed ID: 23078775
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator.
    Ewing JF; Janero DR
    Anal Biochem; 1995 Dec; 232(2):243-8. PubMed ID: 8747482
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High catalytic activity of dendritic C60 monoadducts in metal-free superoxide dismutation.
    Liu GF; Filipović M; Ivanović-Burmazović I; Beuerle F; Witte P; Hirsch A
    Angew Chem Int Ed Engl; 2008; 47(21):3991-4. PubMed ID: 18407558
    [No Abstract]   [Full Text] [Related]  

  • 67. Cu(II)-disulfide complexes display simultaneous superoxide dismutase- and catalase-like activities.
    Aliaga ME; Andrade-Acuña D; López-Alarcón C; Sandoval-Acuña C; Speisky H
    J Inorg Biochem; 2013 Dec; 129():119-26. PubMed ID: 24103366
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reactions of superoxide with myeloperoxidase.
    Kettle AJ; Anderson RF; Hampton MB; Winterbourn CC
    Biochemistry; 2007 Apr; 46(16):4888-97. PubMed ID: 17381162
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Kinetic investigations of the autoxidation of adrenalin.
    Bors W; Michel C; Saran M; Lengfelder E
    Z Naturforsch C Biosci; 1978; 33(11-12):891-6. PubMed ID: 217185
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Superoxide dismutases and superoxide reductases.
    Sheng Y; Abreu IA; Cabelli DE; Maroney MJ; Miller AF; Teixeira M; Valentine JS
    Chem Rev; 2014 Apr; 114(7):3854-918. PubMed ID: 24684599
    [No Abstract]   [Full Text] [Related]  

  • 71. Stopped flow spectrophotometric observation of superoxide dismutation in aqueous solution.
    McClune GJ; Fee JA
    FEBS Lett; 1976 Sep; 67(3):294-8. PubMed ID: 183983
    [No Abstract]   [Full Text] [Related]  

  • 72. Electrochemical determination of the superoxide ion concentration from KO2 dissolved in dimethyl sulfoxide.
    Kishioka SY; Takekawa T; Yamada A
    Anal Sci; 2004 Oct; 20(10):1465-6. PubMed ID: 15524204
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High Enzyme Activity of a Binuclear Nickel Complex Formed with the Binding Loops of the NiSOD Enzyme*.
    Kelemen D; May NV; Andrási M; Gáspár A; Fábián I; Lihi N
    Chemistry; 2020 Dec; 26(70):16767-16773. PubMed ID: 32744741
    [TBL] [Abstract][Full Text] [Related]  

  • 74. New insights into the mechanism of nickel superoxide degradation from studies of model peptides.
    Tietze D; Sartorius J; Koley Seth B; Herr K; Heimer P; Imhof D; Mollenhauer D; Buntkowsky G
    Sci Rep; 2017 Dec; 7(1):17194. PubMed ID: 29222438
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Oxidative half-reaction of arabidopsis thaliana sulfite oxidase: generation of superoxide by a peroxisomal enzyme.
    Byrne RS; Hänsch R; Mendel RR; Hille R
    J Biol Chem; 2009 Dec; 284(51):35479-84. PubMed ID: 19875441
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Direct magnetic resonance evidence for peroxymonocarbonate involvement in the cu,zn-superoxide dismutase peroxidase catalytic cycle.
    Bonini MG; Gabel SA; Ranguelova K; Stadler K; Derose EF; London RE; Mason RP
    J Biol Chem; 2009 May; 284(21):14618-27. PubMed ID: 19286663
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Decay kinetics of O2.- studied by direct spectrophotometry. Interaction with catalytic and non-catalytic substances.
    Bolann BJ; Henriksen H; Ulvik RJ
    Biochim Biophys Acta; 1992 Dec; 1156(1):27-33. PubMed ID: 1335285
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Improvement of a direct spectrophotometric assay for routine determination of superoxide dismutase activity.
    Bolann BJ; Ulvik RJ
    Clin Chem; 1991 Nov; 37(11):1993-9. PubMed ID: 1657455
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stopped-flow kinetic analysis for monitoring superoxide decay in aqueous systems.
    Riley DP; Rivers WJ; Weiss RH
    Anal Biochem; 1991 Aug; 196(2):344-9. PubMed ID: 1663709
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Determination of manganese superoxide dismutase activity by direct spectrophotometry.
    Bolann BJ; Tangerås A; Ulvik RJ
    Free Radic Res; 1996 Dec; 25(6):541-6. PubMed ID: 8951426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.