These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1335350)

  • 1. Actions of epinephrine on neurons in the rat midbrain periaqueductal gray maintained in vitro.
    Jiang M; Chandler SD; Ennis M; Shipley MT; Behbehani MM
    Brain Res Bull; 1992 Dec; 29(6):871-7. PubMed ID: 1335350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the effect of cholecystokinin (CCK) on neurons in the periaqueductal gray of the rat: immunocytochemical and in vivo and in vitro electrophysiological studies.
    Liu H; Chandler S; Beitz AJ; Shipley MT; Behbehani MM
    Brain Res; 1994 Apr; 642(1-2):83-94. PubMed ID: 8032904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of serotonin1A receptors inhibits midbrain periaqueductal gray neurons of the rat.
    Behbehani MM; Liu H; Jiang M; Pun RY; Shipley MT
    Brain Res; 1993 May; 612(1-2):56-60. PubMed ID: 8330213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane and synaptic effects of corticotropin-releasing factor on periaqueductal gray neurons of the rat.
    Bowers LK; Swisher CB; Behbehani MM
    Brain Res; 2003 Aug; 981(1-2):52-7. PubMed ID: 12885425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic effects of nitric oxide on enkephalinergic, GABAergic, and glutamatergic networks of the rat periaqueductal gray.
    Hall CW; Behbehani MM
    Brain Res; 1998 Sep; 805(1-2):69-87. PubMed ID: 9733923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory and excitatory projections from the dorsal raphe nucleus to neurons in the dorsolateral periaqueductal gray matter in slices of midbrain maintained in vitro.
    Stezhka VV; Lovick TA
    Neuroscience; 1994 Sep; 62(1):177-87. PubMed ID: 7816199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses.
    Aubrey KR; Drew GM; Jeong HJ; Lau BK; Vaughan CW
    J Physiol; 2017 Jan; 595(1):165-178. PubMed ID: 27461371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro electrophysiological characterization of midbrain periaqueductal gray neurons in female rats: responses to GABA- and Met-enkephalin-related agents.
    Ogawa S; Kow LM; Pfaff DW
    Brain Res; 1994 Dec; 666(2):239-49. PubMed ID: 7882034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro.
    Vaughan CW; Christie MJ
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):463-72. PubMed ID: 9032693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors.
    da Costa Gomez TM; Behbehani MM
    Brain Res; 1995 Aug; 689(1):21-31. PubMed ID: 8528703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray.
    Jiang M; Behbehani MM
    Pain; 2001 Nov; 94(2):139-147. PubMed ID: 11690727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of GABA and its antagonists on midbrain periaqueductal gray neurons in the rat.
    Behbehani MM; Jiang M; Chandler SD; Ennis M
    Pain; 1990 Feb; 40(2):195-204. PubMed ID: 2308765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological influence of lateral proisocortex on the midbrain periaqueductal gray: evidence for a role of an excitatory amino acid in synaptic activation.
    Behbehani MM; Jiang M; Ennis M; Shipley MT
    Neuroscience; 1993 Apr; 53(3):787-95. PubMed ID: 8487955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala.
    Finnegan TF; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2005 Feb; 312(2):441-8. PubMed ID: 15388784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The medial preoptic nucleus of the hypothalamus modulates activity of nitric oxide sensitive neurons in the midbrain periaqueductal gray.
    Hall CW; Behbehani MM
    Brain Res; 1997 Aug; 765(2):208-17. PubMed ID: 9313893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serotonergic modulation of neuronal activity in rat midbrain periaqueductal gray.
    Jeong HJ; Lam K; Mitchell VA; Vaughan CW
    J Neurophysiol; 2013 Jun; 109(11):2712-9. PubMed ID: 23515792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of the midbrain periaqueductal gray modulates preinspiratory neurons in the ventrolateral medulla in the rat in vivo.
    Subramanian HH; Holstege G
    J Comp Neurol; 2013 Sep; 521(13):3083-98. PubMed ID: 23630049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of neurotensin on neurons in the periaqueductal gray: an in vitro study.
    Behbehani MM; Shipley MT; McLean JH
    J Neurosci; 1987 Jul; 7(7):2035-40. PubMed ID: 3612228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quiescence and hyporeactivity evoked by activation of cell bodies in the ventrolateral midbrain periaqueductal gray of the rat.
    Depaulis A; Keay KA; Bandler R
    Exp Brain Res; 1994; 99(1):75-83. PubMed ID: 7925798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotensin excites periaqueductal gray neurons projecting to the rostral ventromedial medulla.
    Li AH; Hwang HM; Tan PP; Wu T; Wang HL
    J Neurophysiol; 2001 Apr; 85(4):1479-88. PubMed ID: 11287471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.