These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1335484)

  • 1. Ligand atom partial charges assignment for complementary electrostatic potentials.
    Chan SL; Chau PL; Goodman JM
    J Comput Aided Mol Des; 1992 Oct; 6(5):461-74. PubMed ID: 1335484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic complementarity between proteins and ligands. 3. Structural basis.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):545-64. PubMed ID: 7876900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.
    Bohacek RS; McMartin C
    J Med Chem; 1992 May; 35(10):1671-84. PubMed ID: 1588550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial Atomic Charges and Screened Charge Models of the Electrostatic Potential.
    Wang B; Truhlar DG
    J Chem Theory Comput; 2012 Jun; 8(6):1989-98. PubMed ID: 26593833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic complementarity between proteins and ligands. 1. Charge disposition, dielectric and interface effects.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):513-25. PubMed ID: 7876898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic complementarity between proteins and ligands. 2. Ligand moieties.
    Chau PL; Dean PM
    J Comput Aided Mol Des; 1994 Oct; 8(5):527-44. PubMed ID: 7876899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A geometry optimization and molecular electrostatic potential mapping study of structure-activity relationship for some anti-Alzheimer agents.
    Kushwaha PS; Shukla MK; Mishra PC
    Indian J Biochem Biophys; 1999 Apr; 36(2):101-6. PubMed ID: 10549169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A practical procedure for the determination of electrostatic charges of large molecules.
    Orozco M; Luque FJ
    J Comput Aided Mol Des; 1990 Dec; 4(4):411-26. PubMed ID: 2092084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halogen bonding in ligand-receptor systems in the framework of classical force fields.
    Rendine S; Pieraccini S; Forni A; Sironi M
    Phys Chem Chem Phys; 2011 Nov; 13(43):19508-16. PubMed ID: 21964576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of the interactions between the Sem-5 SH3 domain and its ligands using molecular dynamics, free energy calculations, and sequence analysis.
    Wang W; Lim WA; Jakalian A; Wang J; Wang J; Luo R; Bayly CI; Kollman PA
    J Am Chem Soc; 2001 May; 123(17):3986-94. PubMed ID: 11457149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unifying electrostatic mechanism for receptor-ligand activity.
    Kovacic P; Pozos RS; Draskovich CD
    J Recept Signal Transduct Res; 2007; 27(5-6):411-31. PubMed ID: 18097940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design.
    Zauhar RJ; Moyna G; Tian L; Li Z; Welsh WJ
    J Med Chem; 2003 Dec; 46(26):5674-90. PubMed ID: 14667221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Orbital-Overlap Complement to Ligand and Binding Site Electrostatic Potential Maps.
    Mehmood A; Jones SI; Tao P; Janesko BG
    J Chem Inf Model; 2018 Sep; 58(9):1836-1846. PubMed ID: 30160959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of electrostatic complements to proteins: a case of charge stabilized binding.
    Chong LT; Dempster SE; Hendsch ZS; Lee LP; Tidor B
    Protein Sci; 1998 Jan; 7(1):206-10. PubMed ID: 9514276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic complementarity at protein/protein interfaces.
    McCoy AJ; Chandana Epa V; Colman PM
    J Mol Biol; 1997 May; 268(2):570-84. PubMed ID: 9159491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes.
    Bauer MR; Mackey MD
    J Med Chem; 2019 Mar; 62(6):3036-3050. PubMed ID: 30807144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of isodensity surface sampling on ESP derived charges and the effect of adding bondcenters on DMA derived charges.
    Schaftenaar G; Noordik JH
    J Comput Aided Mol Des; 2000 Mar; 14(3):233-42. PubMed ID: 10756478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Electrostatic Potentials from Invariom Point Charges.
    Wandtke CM; Lübben J; Dittrich B
    Chemphyschem; 2016 Jul; 17(14):2238-46. PubMed ID: 26999276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docking by least-squares fitting of molecular surface patterns.
    Bacon DJ; Moult J
    J Mol Biol; 1992 Jun; 225(3):849-58. PubMed ID: 1602486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.