These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1335837)

  • 21. Different plasticity changes in D1 and D2 receptors in rat striatal subregions following impairment of dopaminergic transmission.
    Savasta M; Dubois A; Benavidès J; Scatton B
    Neurosci Lett; 1988 Feb; 85(1):119-24. PubMed ID: 2834672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry.
    Clarke DJ; Brundin P; Strecker RE; Nilsson OG; Björklund A; Lindvall O
    Exp Brain Res; 1988; 73(1):115-26. PubMed ID: 3145209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic haloperidol treatment differentially affects the expression of synaptic and neuronal plasticity-associated genes.
    Eastwood SL; Heffernan J; Harrison PJ
    Mol Psychiatry; 1997 Jul; 2(4):322-9. PubMed ID: 9246673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Haloperidol-induced morphological alterations are associated with changes in calcium/calmodulin kinase II activity and glutamate immunoreactivity.
    Meshul CK; Tan SE
    Synapse; 1994 Nov; 18(3):205-17. PubMed ID: 7855733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines.
    Freund TF; Powell JF; Smith AD
    Neuroscience; 1984 Dec; 13(4):1189-215. PubMed ID: 6152036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repeated haloperidol increases both calmodulin and a calmodulin-binding protein in rat striatum.
    Gnegy ME; Agrawal A; Hewlett K; Yeung E; Yee S
    Brain Res Mol Brain Res; 1994 Dec; 27(2):195-204. PubMed ID: 7898303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrastructural evaluation of the damage of postsynaptic elements after kainic acid injection into the rat neostriatum.
    Matyja E
    J Neurosci Res; 1986; 15(3):405-13. PubMed ID: 3701889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of subchronic clozapine and haloperidol on striatal glutamatergic synapses.
    Meshul CK; Bunker GL; Mason JN; Allen C; Janowsky A
    J Neurochem; 1996 Nov; 67(5):1965-73. PubMed ID: 8863502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of chronic haloperidol treatment on stimulated synaptic overflow of dopamine in the rat striatum.
    Wiedemann DJ; Garris PA; Near JA; Wightman RM
    J Pharmacol Exp Ther; 1992 May; 261(2):574-9. PubMed ID: 1533666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrastructural correlates of haloperidol-induced oral dyskinesias in rats: a study of unlabeled and enkephalin-labeled striatal terminals.
    Roberts RC; Lapidus B
    J Neural Transm (Vienna); 2003 Sep; 110(9):961-75. PubMed ID: 12938022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of N-methyl-D-aspartate (NMDA) immunoreactivity in residual dendritic spines in the caudate-putamen nucleus after chronic haloperidol administration.
    Rodríguez JJ; Pickel VM
    Synapse; 1999 Sep; 33(4):289-303. PubMed ID: 10421710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acute versus chronic haloperidol: relationship between tolerance to catalepsy and striatal and accumbens dopamine, GABA and acetylcholine release.
    Osborne PG; O'Connor WT; Beck O; Ungerstedt U
    Brain Res; 1994 Jan; 634(1):20-30. PubMed ID: 7908848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust synaptic plasticity of striatal cells following partial deafferentation.
    Chen S; Hillman DE
    Brain Res; 1990 Jun; 520(1-2):103-14. PubMed ID: 2207624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrastructural characteristics of substance P-immunoreactive terminals in marginal division of rat striatum.
    Shu SY; Bao XM; Zhang X
    Chin Med J (Engl); 1991 Nov; 104(11):887-96. PubMed ID: 1724749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Striatal homogenates from animals chronically treated with haloperidol stimulate dopamine and GABA uptake in cultures of rostral mesencephalic tegmentum.
    Carvey PM; Ptak LR; Kao L; Klawans HL
    Clin Neuropharmacol; 1989 Oct; 12(5):425-34. PubMed ID: 2611766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synaptic rearrangements in medial prefrontal cortex of haloperidol-treated rats.
    Benes FM; Paskevich PA; Davidson J; Domesick VB
    Brain Res; 1985 Nov; 348(1):15-20. PubMed ID: 4063818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The modulation of dopaminergic transmission in the striatum by MK-801 is independent of presynaptic mechanisms.
    Gandolfi O; Rimondini R; Dall'Olio R
    Neuropharmacology; 1992 Nov; 31(11):1111-4. PubMed ID: 1335556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Haloperidol-induced plasticity of axon terminals in rat substantia nigra.
    Benes FM; Paskevich PA; Domesick VB
    Science; 1983 Sep; 221(4614):969-71. PubMed ID: 6879197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chronic cocaine administration reduces striatal dopamine terminal density and striatal dopamine release which leads to drug-seeking behaviour.
    Lee J; Parish CL; Tomas D; Horne MK
    Neuroscience; 2011 Feb; 174():143-50. PubMed ID: 21129449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oral dyskinesias and morphological changes in rat striatum during long-term haloperidol administration.
    Andreassen OA; Meshul CK; Moore C; Jørgensen HA
    Psychopharmacology (Berl); 2001 Aug; 157(1):11-9. PubMed ID: 11512038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.