BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 13363)

  • 1. Rhodopsin in model membranes: charge displacements in interfacial layers.
    Trissl HW; Darszon A; Montal M
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):207-10. PubMed ID: 13363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of charge on photoreceptor disc membranes and implications for charged lipid asymmetry.
    Tsui FC; Sundberg SA; Hubbell WL
    Biophys J; 1990 Jan; 57(1):85-97. PubMed ID: 2153422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the lipid environment of the properties of rhodopsin in the photoreceptor membrane.
    Bonting SL; van Breugel PJ; Daemen FJ
    Adv Exp Med Biol; 1977; 83():175-89. PubMed ID: 920457
    [No Abstract]   [Full Text] [Related]  

  • 4. Animal rhodopsin as a photogenerator of an electric potential that increases photoreceptor membrane permeability.
    Drachev LA; Kalamkarov GR; Kaulen AD; Ostrovsky MA; Skulachev VP
    FEBS Lett; 1980 Sep; 119(1):125-31. PubMed ID: 6253316
    [No Abstract]   [Full Text] [Related]  

  • 5. Light-regulated permeability of rhodopsin-phospholipid membrane vesicles.
    O'Brien DF
    Photochem Photobiol; 1979 Apr; 29(4):679-85. PubMed ID: 451007
    [No Abstract]   [Full Text] [Related]  

  • 6. Transbilayer coupling mechanism for the formation of lipid asymmetry in biological membranes. Application to the photoreceptor disc membrane.
    Hubbell WL
    Biophys J; 1990 Jan; 57(1):99-108. PubMed ID: 2297564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of pH on the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ; Brown MF
    Biochem Biophys Res Commun; 1990 Jun; 169(3):1028-34. PubMed ID: 2363712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Reversible pH-dependent aggregation of rhodopsin molecules in photoreceptor membranes].
    Pogozheva ID; Kuznetsov VA; Livshits VA; Fedorovich IB; Ostrovskiĭ MA
    Dokl Akad Nauk SSSR; 1981; 260(5):1254-8. PubMed ID: 7307912
    [No Abstract]   [Full Text] [Related]  

  • 9. Cooperative conformational change in rod photoreceptor disk membrane induced by bleaching.
    Asai H; Chiba T; Watanabe M
    Vision Res; 1977; 17(8):983-4. PubMed ID: 595406
    [No Abstract]   [Full Text] [Related]  

  • 10. Lack of interaction of rhodopsin chromophore with membrane lipids. An electron-electron double resonance study using 14N:15N pairs.
    Renk GE; Crouch RK; Feix JB
    Biophys J; 1988 Mar; 53(3):361-5. PubMed ID: 2832012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical responses to light: fast photovoltages of rhodopsin-containing membrane systems and their correlations with the spectral intermediates.
    Trissl HW
    Methods Enzymol; 1982; 81():431-9. PubMed ID: 7098890
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of rhodopsin and its photoproducts on the late receptor potential of the isolated frog retina.
    Hanawa I; Matsuura T
    Vision Res; 1975 Dec; 15(12):1303-10. PubMed ID: 1082198
    [No Abstract]   [Full Text] [Related]  

  • 13. The orientation of the chromophore of vertebrate rhodopsin in the "meta" intermediate states and the reversibility of the meta II-meta III transition.
    Chabre M; Breton J
    Vision Res; 1979; 19(9):1005-18. PubMed ID: 43624
    [No Abstract]   [Full Text] [Related]  

  • 14. [Mechanism of early receptor potential generation and an electrical model of retinal rods in rats].
    Govardovskiĭ VI
    Biofizika; 1978; 23(3):514-9. PubMed ID: 667154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Lateral diffusion of rhodopsin in the surface membrane of rat retinal rod outer segment].
    Govardovskiĭ VI
    Biofizika; 1976 Nov; 21(6):1019-23. PubMed ID: 1009194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteinase-treated photoreceptor discs. Photoelectric activity of the partially-digested rhodopsin and membrane orientation.
    Bayramashvili DI; Drachev AL; Drachev LA; Kaulen AD; Kudelin AB; Martynov VI; Skulachev VP
    Eur J Biochem; 1984 Aug; 142(3):583-90. PubMed ID: 6468381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of barnacle photoreceptors to high energy flashes of short duration.
    Krischer CC; Dahl RD; Körfer M
    Z Naturforsch C Biosci; 1978; 33(7-8):600-4. PubMed ID: 152011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The possible role of rhodopsin and the microvillus in light adaptation of the photoreceptors of an insect.
    Razmjoo S; Hamdorf K
    Symp Soc Exp Biol; 1983; 36():109-31. PubMed ID: 6399778
    [No Abstract]   [Full Text] [Related]  

  • 19. Rhodopsin vesicles derived from retinal-outer-segment membranes: effect of light and detergent on the lipid fraction [proceedings].
    Virmaux N; Delmelle M; Nullans G; Dreyfus H
    Biochem Soc Trans; 1978; 6(3):669-71. PubMed ID: 208896
    [No Abstract]   [Full Text] [Related]  

  • 20. Visual response in barnacle photoreceptors is not initiated by transitions to and from metarhodopsin.
    Atzmon Z; Hillman P; Hochstein S
    Nature; 1978 Jul; 274(5666):74-6. PubMed ID: 661999
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.