BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1336370)

  • 1. Valinomycin modifies phosphorescence quenching in cytochrome c oxidase.
    Butko P; He J; Nicholls P
    Biochem Biophys Res Commun; 1992 Dec; 189(3):1477-83. PubMed ID: 1336370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valinomycin binds stoichiometrically to cytochrome c oxidase and changes its structure and function.
    Steverding D; Kadenbach B
    Biochem Biophys Res Commun; 1989 May; 160(3):1132-9. PubMed ID: 2471518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct and indirect effects of valinomycin upon cytochrome c oxidase.
    Nicholls P; He J
    Arch Biochem Biophys; 1993 Mar; 301(2):305-10. PubMed ID: 8384831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH dependence of the tryptophan fluorescence in cytochrome c oxidase: further evidence for a redox-linked conformational change associated with CuA.
    Copeland RA; Smith PA; Chan SI
    Biochemistry; 1988 May; 27(10):3552-5. PubMed ID: 2841969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome c oxidase exhibits a rapid conformational change upon reduction of CuA: a tryptophan fluorescence study.
    Copeland RA; Smith PA; Chan SI
    Biochemistry; 1987 Nov; 26(23):7311-6. PubMed ID: 2827752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic tryptophan phosphorescence as a marker of conformation and oxygen diffusion in purified cytochrome oxidase.
    Papp S; King TE; Vanderkooi JM
    FEBS Lett; 1991 May; 283(1):113-6. PubMed ID: 1645290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of reductant-induced, tryptophan fluorescence changes in cytochrome oxidase.
    Ferreira-Rajabi L; Hill BC
    Biochemistry; 1989 Oct; 28(20):8028-32. PubMed ID: 2557893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energized transport of potassium ions in the absence of valinomycin by cytochrome c oxidase-reconstituted vesicles.
    Singh AP; Nicholls P
    Biochim Biophys Acta; 1984 Nov; 777(2):194-200. PubMed ID: 6091755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The K(+)-ionophores nonactin and valinomycin interact differently with the protein of reconstituted cytochrome c oxidase.
    Steverding D; Kadenbach B
    J Bioenerg Biomembr; 1990 Apr; 22(2):197-205. PubMed ID: 2158497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of absolute absorption spectrum of reduced heme a in cytochrome C oxidase from bovine heart.
    Dyuba AV; Vygodina TV; Konstantinov AA
    Biochemistry (Mosc); 2013 Dec; 78(12):1358-65. PubMed ID: 24460970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton interactions in the resting form of cytochrome oxidase.
    Papadopoulos PG; Walter SA; Li JW; Baker GM
    Biochemistry; 1991 Jan; 30(3):840-50. PubMed ID: 1846306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection, characterization, and quenching of the intrinsic fluorescence of bovine heart cytochrome c oxidase.
    Hill BC; Horowitz PM; Robinson NC
    Biochemistry; 1986 Apr; 25(8):2287-92. PubMed ID: 3011084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved study of tryptophan fluorescence in vesicle reconstituted cytochrome oxidase. Effect of redox transition.
    Das TK; Mazumdar S
    FEBS Lett; 1993 Dec; 336(2):211-4. PubMed ID: 8262232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan phosphorescence of the Ca2+-ATPase of sarcoplasmic reticulum.
    Vanderkooi JM; Papp S; Pikula S; Martonosi A
    Biochim Biophys Acta; 1988 Nov; 957(2):230-6. PubMed ID: 2973355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods.
    Dodson ED; Zhao XJ; Caughey WS; Elliott CM
    Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy.
    Berger JW; Vanderkooi JM
    Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorescence measurements of calf gamma-II, III, and IV crystallins at 77 and 293 K.
    Berger JW; Vanderkooi JM; Tallmadge DH; Borkman RF
    Exp Eye Res; 1989 May; 48(5):627-39. PubMed ID: 2737261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxide-induced spectral perturbations of the 280-nm absorption band of cytochrome c oxidase.
    Larsen RW
    FEBS Lett; 1994 Oct; 352(3):365-8. PubMed ID: 7926003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of bepridil on the activity of cytochrome c oxidase in solution and in proteoliposomes.
    Antonini E; Brunori M; Colosimo A; Sarti P
    Biochem Pharmacol; 1984 Jan; 33(1):109-13. PubMed ID: 6322790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.