BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1336370)

  • 21. Evidence for two H2O2-binding sites in ferric cytochrome c oxidase. Indication to the O-cycle?
    Vygodina T; Konstantinov AA
    FEBS Lett; 1987 Jul; 219(2):387-92. PubMed ID: 3038610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Valinomycin sensitivity of cytochrome c oxidase vesicles.
    Wrigglesworth JM; Nicholls P
    Biochem Soc Trans; 1975; 3(1):168-71. PubMed ID: 165107
    [No Abstract]   [Full Text] [Related]  

  • 23. Electron transfer from excited tryptophan to cytochrome c: mechanism of phosphorescence quenching?
    Dadak V; Vanderkooi JM; Wright WW
    Biochim Biophys Acta; 1992 Apr; 1100(1):33-9. PubMed ID: 1314664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic and vibrational spectroscopy of the cytochrome c:cytochrome c oxidase complexes from bovine and Paracoccus denitrificans.
    Lynch SR; Copeland RA
    Protein Sci; 1992 Nov; 1(11):1428-34. PubMed ID: 1338946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational switching at cytochrome a during steady-state turnover of cytochrome c oxidase.
    Copeland RA
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7281-3. PubMed ID: 1651500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectroscopic evidence for NADH-induced conformational changes in rabbit muscle aldolase.
    Sytnik AI; Chumachenko YV; Demchenko AP
    Biochim Biophys Acta; 1991 Aug; 1079(2):123-7. PubMed ID: 1911835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A spectroscopic and conformational study of pertussis toxin.
    Seabrook RN; Atkinson T; Irons LI
    Eur J Biochem; 1991 Jun; 198(3):741-7. PubMed ID: 2050151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ligation, inhibition, and activation of cytochrome c oxidase by fatty acids.
    Sharpe M; Perin I; Tattrie B; Nicholls P
    Biochem Cell Biol; 1997; 75(1):71-9. PubMed ID: 9192076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing protein-cofactor interactions in the terminal oxidases by second derivative spectroscopy: study of bacterial enzymes with cofactor substitutions and heme A model compounds.
    Felsch JS; Horvath MP; Gursky S; Hobaugh MR; Goudreau PN; Fee JA; Morgan WT; Admiraal SJ; Ikeda-Saito M; Fujiwara T
    Protein Sci; 1994 Nov; 3(11):2097-103. PubMed ID: 7703856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox-linked conformational changes in bovine heart cytochrome c oxidase: picosecond time-resolved fluorescence studies of cyanide complex.
    Das TK; Mazumdar S
    Biopolymers; 2000; 57(5):316-22. PubMed ID: 10958323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral properties of Trp182, Trp194, and Trp250 on the alpha subunit of bacterial luciferase.
    Li Z; Valkova N; Meighen E
    Biochem Biophys Res Commun; 1999 Oct; 263(3):820-4. PubMed ID: 10512764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microcirculating system for simultaneous determination of Raman and absorption spectra of enzymatic reaction intermediates and its application to the reaction of cytochrome c oxidase with hydrogen peroxide.
    Proshlyakov DA; Ogura T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    Biochemistry; 1996 Jan; 35(1):76-82. PubMed ID: 8555201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation by reduction of the resting form of cytochrome c oxidase: tests of different models and evidence for the involvement of CuB.
    Wrigglesworth JM; Elsden J; Chapman A; Van der Water N; Grahn MF
    Biochim Biophys Acta; 1988 Dec; 936(3):452-64. PubMed ID: 2848581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of nitrite on cytochrome oxidase].
    Markosian KA; Paitian NA; Nalbandian RM
    Biokhimiia; 1981 Sep; 46(9):1615-21. PubMed ID: 6271265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. UV optical absorption by protein radicals in cytochrome c oxidase.
    Proshlyakov DA
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):282-9. PubMed ID: 15100043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of tryptophan environments in glutamate dehydrogenases from temperature-dependent phosphorescence.
    Strambini GB; Cioni P; Felicioli RA
    Biochemistry; 1987 Aug; 26(16):4968-75. PubMed ID: 3663638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quenching of tryptophan phosphorescence in Escherichia coli alkaline phosphatase by long-range transfer mechanisms to external agents in the rapid-diffusion limit.
    Mersol JV; Steel DG; Gafni A
    Biochemistry; 1991 Jan; 30(3):668-75. PubMed ID: 1846302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of freezing and thawing on the structure and function of cytochrome oxidase].
    Rozanova ED; Moiseev VA; Naumenko EI
    Ukr Biokhim Zh (1978); 1985; 57(1):61-4. PubMed ID: 2983467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorescence and optically detected magnetic resonance study of the tryptophan residue in human serum albumin.
    Bell KL; Brenner HC
    Biochemistry; 1982 Feb; 21(4):799-804. PubMed ID: 7074042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectroscopic analysis of the cytochrome c oxidase-cytochrome c complex: circular dichroism and magnetic circular dichroism measurements reveal change of cytochrome c heme geometry imposed by complex formation.
    Weber C; Michel B; Bosshard HR
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6687-91. PubMed ID: 2821542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.