BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1336696)

  • 1. Biological intercomparisons of neutron beams used for radiotherapy generated by p(+)-->Be in hospital-based cyclotrons.
    Hall EJ; Astor M; Brenner DJ
    Br J Radiol; 1992 Jan; 65(769):66-71. PubMed ID: 1336696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiobiological studies with therapeutic neutron beams generated by p+ leads to Be or d+ leads to Be.
    Hall EJ; Zaider M; Bird R; Astor M; Roberts W
    Br J Radiol; 1982 Sep; 55(657):640-4. PubMed ID: 6289956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Clatterbridge high-energy neutron facility: dosimetry intercomparisons.
    Blake SW; Bonnett DE; Shaw JE; Eenmaa J; Otte V; Awschalom M; Tatcher M; Vynckier S
    Br J Radiol; 1988 Oct; 61(730):921-7. PubMed ID: 3191317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of mutation induction on fast-neutron energy in a human epithelial teratocarcinoma cell line (P3).
    Sharma S; Hill CK
    Radiat Res; 1996 Mar; 145(3):331-6. PubMed ID: 8927701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RBE variation between fast neutron beams as a function of energy. Intercomparison involving 7 neutrontherapy facilities.
    Gueulette J; Beauduin M; Grégoire V; Vynckier S; De Coster BM; Octave-Prignot M; Wambersie A; Strijkmans K; De Schrijver A; El-Akkad S; Böhm L; Slabbert JP; Jones DT; Maughan R; Onoda J; Yudelev M; Porter AT; Powers WE; Sabattier R; Breteau N; Courdi A; Brassart N; Chauvel P
    Bull Cancer Radiother; 1996; 83 Suppl():55s-63s. PubMed ID: 8949753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison for use in radiotherapy of neutron beams generated with 16 and 42 MeV deuterons on beryllium.
    Bewley DK; Cullen B; Field SB; Hornsey S; Page BC; Berry RJ
    Br J Radiol; 1976 Apr; 49(580):360-6. PubMed ID: 938853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in biological effectiveness with depth of the Medicyc neutron therapy beam.
    Courdi A; Brassart N; Hérault J; Gabillat JM; Mari D; Pignol JP; Chauvel P
    Bull Cancer Radiother; 1996; 83 Suppl():47s-9s. PubMed ID: 8949751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in relative biological effectiveness with depth of the Clatterbridge neutron therapy beam.
    Hornsey S; Myers R; Parnell CJ; Bonnett DE; Blake SW; Bewley DK
    Br J Radiol; 1988 Nov; 61(731):1058-62. PubMed ID: 3145090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A variety of fast neutron beams for radiobiological research.
    Wolber G; Höver KH; Maier-Borst W; Lorenz WJ; Krauss O
    Bull Cancer Radiother; 1996; 83 Suppl():170s-2s. PubMed ID: 8949772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of neutron therapy beams produced by 50 MeV deuterons and 65 MeV protons on beryllium.
    Vynckier S; Pihet P; Octave-Prignot M; Meulders JP; Wambersie A
    Acta Radiol Oncol; 1982; 21(4):281-7. PubMed ID: 6293271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and simulation of neutron beam fluence energy distributions at the neutron time-of-flight facility of iThemba Labs.
    Herbert MS
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):377-82. PubMed ID: 24667277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetry intercomparisons between fast-neutron radiotherapy facilities.
    Smith AR; Almond PR
    Med Phys; 1975; 2(4):195-200. PubMed ID: 806775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TPD-based evaluation of near threshold mono-energetic proton energies for the (7)Li(p,n)(7)Be production of neutrons for BNCT.
    Bengua G; Kobayashi T; Tanaka K; Nakagawa Y; Unesaki H
    Phys Med Biol; 2006 Aug; 51(16):4095-109. PubMed ID: 16885627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetry of clinical neutron and proton beams: an overview of recommendations.
    Vynckier S; ;
    Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p(42)Be neutron therapy beams: dose rate and penetration as a function of target thickness and beam filtration.
    Rosenberg I; Awschalom M; Kuo TY; Tom JL
    Med Phys; 1981; 8(6):808-12. PubMed ID: 7322079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Clatterbridge high-energy neutron therapy facility: specification and performance.
    Bonnett DE; Blake SW; Shaw JE; Bewley DK
    Br J Radiol; 1988 Jan; 61(721):38-46. PubMed ID: 3126848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new fast-neutron source for radiobiological research.
    Wolber G; Hoever KH; Krauss O; Maier-Borst W
    Phys Med Biol; 1997 Apr; 42(4):725-33. PubMed ID: 9127448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical shielding calculations for a proton therapy facility.
    Avery S; Ainsley C; Maughan R; McDonough J
    Radiat Prot Dosimetry; 2008; 131(2):167-79. PubMed ID: 18487617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.