These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 13367044)

  • 1. Enzymatic amination of uridine triphosphate to cytidine triphosphate.
    LIEBERMAN I
    J Biol Chem; 1956 Oct; 222(2):765-75. PubMed ID: 13367044
    [No Abstract]   [Full Text] [Related]  

  • 2. FEEDBACK INHIBITION OF URIDINE KINASE BY CYTIDINE TRIPHOSPHATE AND URIDINE TRIPHOSPHATE.
    ANDERSON EP; BROCKMAN RW
    Biochim Biophys Acta; 1964 Nov; 91():380-6. PubMed ID: 14254009
    [No Abstract]   [Full Text] [Related]  

  • 3. Ground state, intermediate, and multivalent nucleotide analogue inhibitors of cytidine 5'-triphosphate synthase.
    Taylor SD; Lunn FA; Bearne SL
    ChemMedChem; 2008 Dec; 3(12):1853-7. PubMed ID: 18988211
    [No Abstract]   [Full Text] [Related]  

  • 4. Nucleoside triphosphate pools in minicells of Escherichia coli.
    Manwaring JD; Fuchs JA
    J Bacteriol; 1977 May; 130(2):960-2. PubMed ID: 400803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [ROLE OF THE PYRIMIDINE NUCLEOTIDES IN OSSIFICATION PROCESSES. II. INFLUENCE OF URIDINE TRIPHOSPHATE AND OF CYTIDINE TRIPHOSPHATE ON THE COCARBOXYLASE AND ATP CONTENT OF GROWTH CARTILAGE].
    LASSARI A
    Gazz Int Med Chir; 1964 Aug; 68():1545-8. PubMed ID: 14187214
    [No Abstract]   [Full Text] [Related]  

  • 6. Amination of uridine nucleotides to cytidine nucleotides by soluble mammalian enzymes; role of glutamine and guanosine nucleotides.
    KAMMEN HO; HURLBERT RB
    Biochim Biophys Acta; 1958 Oct; 30(1):195-6. PubMed ID: 13584420
    [No Abstract]   [Full Text] [Related]  

  • 7. Activation of phosphoenolpyruvate-dependent protein kinase by cytidine 5'-triphosphate in rat skeletal muscle.
    Mattoo RL; Waygood EB; Khandelwal RL
    FEBS Lett; 1984 Jan; 165(1):117-20. PubMed ID: 6692909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Conversion of nucleoside triphosphates in an RNA polymerase system].
    Denisova LIa; Zagrebel'nyĭ SN; Kileva EV; Pustoshilova NM; Torbina AI
    Mol Biol (Mosk); 1978; 12(4):766-71. PubMed ID: 355863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion of cytidine triphosphate as a consequence of cellular uridine triphosphate deficiency.
    Henninger H; Holstege A; Herrmann B; Anukarahanonta T; Keppler DO
    FEBS Lett; 1979 Jul; 103(1):165-7. PubMed ID: 467645
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of glutamine in the biosynthesis of cytidine nucleotides in Escherichia coli.
    CHAKRABORTY KP; HURLBERT RB
    Biochim Biophys Acta; 1961 Mar; 47():607-9. PubMed ID: 13692169
    [No Abstract]   [Full Text] [Related]  

  • 11. Specificity and efficiency of rho-factor helicase activity depends on magnesium concentration and energy coupling to NTP hydrolysis.
    Brennan CA; Steinmetz EJ; Spear P; Platt T
    J Biol Chem; 1990 Apr; 265(10):5440-7. PubMed ID: 1690711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of CTP-synthetase from E. coli.
    Scheit KH; Linke HJ
    Nucleic Acids Symp Ser; 1981; (9):229-33. PubMed ID: 7029474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes.
    Pels Rijcken WR; Overdijk B; Van den Eijnden DH; Ferwerda W
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):865-70. PubMed ID: 7848287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The preparation of labeled uridine 5-triphosphate by the action of mono- and diphosphouridine kinases from Escherichia coli.
    BRESLER AE
    Biochim Biophys Acta; 1962 Jul; 61():29-33. PubMed ID: 13872854
    [No Abstract]   [Full Text] [Related]  

  • 15. Enzymatic production of pyrimidine nucleotides using Corynebacterium ammoniagenes cells and recombinant Escherichia coli cells: enzymatic production of CDP-choline from orotic acid and choline chloride (Part I).
    Fujio T; Maruyama A
    Biosci Biotechnol Biochem; 1997 Jun; 61(6):956-9. PubMed ID: 9214753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of deoxycytidine 5'-phosphate from cytidine 5'-phosphate with enzymes from Escherichia coli.
    REICHARD P; RUTBERG L
    Biochim Biophys Acta; 1960 Jan; 37():554-5. PubMed ID: 14437040
    [No Abstract]   [Full Text] [Related]  

  • 17. The uptake of [3H]uridine in normal and filamentous forms of Escherichia coli infected with T-2 bacteriophage.
    CARO LG; KAHN P
    Biochim Biophys Acta; 1960 Aug; 42():351-4. PubMed ID: 14448611
    [No Abstract]   [Full Text] [Related]  

  • 18. Fishing in the (deoxyribonucleotide) pool.
    Saada A
    Biochem J; 2009 Aug; 422(3):e3-6. PubMed ID: 19698084
    [No Abstract]   [Full Text] [Related]  

  • 19. Separation and quantitation of bacterial ribonucleoside triphosphates extracted with trifluoroacetic acid, by anion-exchange high-performance liquid chromatography.
    Dutta PK; O'Donovan GA
    J Chromatogr; 1987 Jan; 385():119-24. PubMed ID: 3104374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ability of nucleoside triphosphates to provide for Ca 2+ transport by sarcoplasmic reticulum fragments].
    Lushchak VI
    Ukr Biokhim Zh (1978); 1990; 62(2):64-9. PubMed ID: 2142350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.