These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 13367072)

  • 1. 5-Phosphoribosylamine, a precursor of glycinamide ribotide.
    GOLDTHWAIT DA
    J Biol Chem; 1956 Oct; 222(2):1051-68. PubMed ID: 13367072
    [No Abstract]   [Full Text] [Related]  

  • 2. The involvement of 5-phosphoribosylamine in the biosynthesis of glycinamide ribotide.
    GOLDTHWAIT DA; GREENBERG GR; PEABODY RA
    Biochim Biophys Acta; 1955 Sep; 18(1):148-9. PubMed ID: 13260261
    [No Abstract]   [Full Text] [Related]  

  • 3. Enzymatic formation of xylulose 5-phosphate from ribose 5-phosphate in spleen.
    ASHWELL G; HICKMAN J
    J Biol Chem; 1957 May; 226(1):65-76. PubMed ID: 13428737
    [No Abstract]   [Full Text] [Related]  

  • 4. The enzymatic cleavage of adenylic acid to adenine and ribose 5-phosphate.
    HURWITZ J; HEPPEL LA; HORECKER BL
    J Biol Chem; 1957 May; 226(1):525-40. PubMed ID: 13428783
    [No Abstract]   [Full Text] [Related]  

  • 5. Biosynthesis of the purines. XI. Structure, enzymatic synthesis, and metabolism of glycinamide ribotide and (alpha-N-formyl)-glycinamide ribotide.
    BUCHANAN JM; HARTMAN SC; LEVENBERG B
    J Biol Chem; 1956 Aug; 221(2):1057-70. PubMed ID: 13357498
    [No Abstract]   [Full Text] [Related]  

  • 6. [Accumulation of glycineamide ribotide in culture medium of Mycobacterium avium inhibited by p-aminosalicylic acid].
    KATSUNUMA N; ISHIKAWA E; WATARAI K
    Kekkaku; 1955 Oct; 30(10):591-2. PubMed ID: 13286839
    [No Abstract]   [Full Text] [Related]  

  • 7. Biosynthesis of the purines. XIV. Conversion of (alpha-N-formyl) glycinamide ribotide to (alpha-N-formyl) glycinamidine ribotide; purification and requirements of the enzyme system.
    MELNICK I; BUCHANAN JM
    J Biol Chem; 1957 Mar; 225(1):157-62. PubMed ID: 13416226
    [No Abstract]   [Full Text] [Related]  

  • 8. The structure of glycinamide ribotide.
    GOLDTHWAIT DA; GREENBERG GR; PEABODY RA
    J Biol Chem; 1956 Aug; 221(2):1071-81. PubMed ID: 13357499
    [No Abstract]   [Full Text] [Related]  

  • 9. On the occurrence of glycinamide ribotide and its formyl derivative.
    GOLDTHWAIT DA; GREENBERG GR; PEABODY RA
    J Biol Chem; 1956 Aug; 221(2):555-67. PubMed ID: 13357450
    [No Abstract]   [Full Text] [Related]  

  • 10. On the mechanism of synthesis of glycinamide ribotide and its formyl derivative.
    GOLDTHWAIT DA; GREENBERG GR; PEABODY RA
    J Biol Chem; 1956 Aug; 221(2):569-77. PubMed ID: 13357451
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanisms in the interconversion of ribose-5-phosphate and hexose-6-phosphate in human blood. I. Isomerization of ribose-5-phosphate in human hemolysates.
    DISCHE Z; SHIGEURA H
    Biochim Biophys Acta; 1957 Apr; 24(1):87-99. PubMed ID: 13426206
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanisms in the interconversion of ribose 5-phosphate and hexose 6-phosphate in human hemolyzates. 1. Sedohetulose and triose phosphates as intermediates in the conversion of ribose 5-phosphate to hexose 6-phosphate in human hemolyzates.
    DISCHE Z; SHIGEURA HT; LANDSBERG E
    Arch Biochem Biophys; 1960 Jul; 89():123-33. PubMed ID: 13816919
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies involving enzymic phosphorylation. 4. The conversion of D-ribose into D-ribose 5-phosphate by extracts of Escherichia coli.
    LONG C
    Biochem J; 1955 Feb; 59(2):322-9. PubMed ID: 14351200
    [No Abstract]   [Full Text] [Related]  

  • 14. CO2 fixation and utilization of ribose 5-phosphate by certain normal and tumor cells.
    BARRON ES; VILLAVICENCIO M; KING DW
    Arch Biochem Biophys; 1955 Oct; 58(2):500-2. PubMed ID: 13269143
    [No Abstract]   [Full Text] [Related]  

  • 15. An improved method of preparation of inosinic acid and ribose 5-phosphate.
    MARMUR J; SCHLENK F; OVERLAND RN
    Arch Biochem Biophys; 1951 Nov; 34(1):209-15. PubMed ID: 14904051
    [No Abstract]   [Full Text] [Related]  

  • 16. [Specificity of ribose-1-phosphate-purine transribosidase (nucleoside phosphorylase) in liver].
    RICCI C; MISSALE G
    Boll Soc Ital Biol Sper; 1955; 31(7-8):983-4. PubMed ID: 13315759
    [No Abstract]   [Full Text] [Related]  

  • 17. Preparation of 32P-labelled adenosine 5'-phosphate, inosine 5'-phosphate and ribose 5-phosphate.
    EGGLESTON LV
    Biochem J; 1954 Nov; 58(3):503-6. PubMed ID: 13208643
    [No Abstract]   [Full Text] [Related]  

  • 18. Synthesis of deoxyribose-5-phosphate in animal tissues.
    CHEH S; WANG TP
    Sci Sin; 1958 Mar; 7(3):333-45. PubMed ID: 13555929
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization and chemical properties of phosphoribosylamine, an unstable intermediate in the de novo purine biosynthetic pathway.
    Schendel FJ; Cheng YS; Otvos JD; Wehrli S; Stubbe J
    Biochemistry; 1988 Apr; 27(7):2614-23. PubMed ID: 2454658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbocyclic substrates for de novo purine biosynthesis.
    Liu DS; Caperelli CA
    J Biol Chem; 1991 Sep; 266(25):16699-702. PubMed ID: 1885598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.