These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 1336791)

  • 1. The processing of beta-endorphin and alpha-melanotrophin in the pars intermedia of Xenopus laevis is influenced by background adaptation.
    Maruthainar K; Peng-Loh Y; Smyth DG
    J Endocrinol; 1992 Dec; 135(3):469-78. PubMed ID: 1336791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis.
    Roubos EW; Berghs CA
    Cell Tissue Res; 1993 Dec; 274(3):587-96. PubMed ID: 8293450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential acetylation of pro-opiomelanocortin-derived peptides in the pituitary gland of Xenopus laevis in relation to background adaptation.
    van Strien FJ; Galas L; Jenks BG; Roubos EW
    J Endocrinol; 1995 Jul; 146(1):159-67. PubMed ID: 7561613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential mechanisms for the N-acetylation of alpha-melanocyte-stimulating hormone and beta-endorphin in the intermediate pituitary of the frog, Xenopus laevis.
    Dores RM; Steveson TC; Lopez K
    Neuroendocrinology; 1991 Jan; 53(1):54-62. PubMed ID: 1646412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and partial characterization of proopiomelanocortin-related end-products from the pars intermedia of the toad, Bombina orientalis.
    Dores RM; Truong T; Steveson TC
    Gen Comp Endocrinol; 1992 Aug; 87(2):197-207. PubMed ID: 1327951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha-melanocyte-stimulating hormone and N-acetyl-beta-endorphin immunoreactivities are localized in the human pituitary but are not restricted to the zona intermedia.
    Evans VR; Manning AB; Bernard LH; Chronwall BM; Millington WR
    Endocrinology; 1994 Jan; 134(1):97-106. PubMed ID: 8275975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process.
    Verburg-van Kemenade BM; Jenks BG; Smits RJ
    Neuroendocrinology; 1987 Oct; 46(4):289-96. PubMed ID: 2823159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylation of melanocyte-stimulating hormone and beta-endorphin in the pars intermedia of the perinatal pituitary gland in the mouse.
    Leenders HJ; Janssens JJ; Theunissen HJ; Jenks BG; van Overbeeke AP
    Neuroendocrinology; 1986; 43(2):166-74. PubMed ID: 2941692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo biosynthesis of melanotropins and related peptides in the pars intermedia of Xenopus laevis.
    Martens GJ; Soeterik F; Jenks BG; van Overbeeke AP
    Gen Comp Endocrinol; 1983 Jan; 49(1):73-80. PubMed ID: 6298059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analysis of the proopiomelanocortin systems in the pituitary of the squamate reptile Lacerta galloti.
    Lancha A; Batista MA; Dores RM
    Gen Comp Endocrinol; 1994 Mar; 93(3):438-47. PubMed ID: 8194743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of pro-ACTH/endorphin-derived peptides in rat hypothalamus.
    Emeson RB; Eipper BA
    J Neurosci; 1986 Mar; 6(3):837-49. PubMed ID: 3007691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis.
    Tuinhof R; Ubink R; Tanaka S; Atzori C; van Strien FJ; Roubos EW
    Cell Tissue Res; 1998 May; 292(2):251-65. PubMed ID: 9560468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential N-acetylation of alpha-MSH and beta-endorphin in the intermediate pituitary of the turtle, Pseudemys scripta.
    Dores RM; Harris S
    Peptides; 1993; 14(4):849-55. PubMed ID: 8234035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of N-acetylated forms of beta-endorphin and nonacetylated alpha-MSH in the intermediate pituitary of the toad, Bufo marinus.
    Steveson TC; Jennett CL; Dores RM
    Peptides; 1990; 11(4):797-803. PubMed ID: 2172945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-endorphin-related peptides in the pituitary gland: isolation, identification and distribution.
    Smyth DG; Zakarian S; Deakin JF; Massey DE
    Ciba Found Symp; 1981; 81():79-96. PubMed ID: 6268384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of three proopiomelanocortin subtype genes and mass spectrometric identification of POMC-derived peptides in pars distalis and pars intermedia of barfin flounder pituitary.
    Takahashi A; Amano M; Amiya N; Yamanome T; Yamamori K; Kawauchi H
    Gen Comp Endocrinol; 2006 Feb; 145(3):280-6. PubMed ID: 16242690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. alpha-MSH acetylation in the pituitary gland of the sea bream (Sparus aurata L.) in response to different backgrounds, confinement and air exposure.
    Arends RJ; Rotllant J; Metz JR; Mancera JM; Wendelaar Bonga SE ; Flik G
    J Endocrinol; 2000 Aug; 166(2):427-35. PubMed ID: 10927632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopaminergic agents differentially regulate both processing and content of alpha-N-acetylated endorphin and alpha-MSH in the ovine pituitary intermediate lobe.
    Smith AI; Wallace CA; Clarke IJ; Funder JW
    Neuroendocrinology; 1989 May; 49(5):545-50. PubMed ID: 2566941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of beta-endorphins in the pituitary gland and blood plasma of the common carp (Cyprinus carpio).
    van Den Burg EH; Metz JR; Arends RJ; Devreese B; Vandenberghe I; Van Beeumen J; Wendelaar Bonga SE; Flik G
    J Endocrinol; 2001 May; 169(2):271-80. PubMed ID: 11312144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis.
    de Koning HP; Jenks BG; Scheenen WJ; Balm PH; Roubos EW
    Gen Comp Endocrinol; 1992 Sep; 87(3):394-401. PubMed ID: 1330808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.