These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1336828)

  • 1. In vitro responses of caudal hypothalamic neurons to hypoxia and hypercapnia.
    Dillon GH; Waldrop TG
    Neuroscience; 1992 Dec; 51(4):941-50. PubMed ID: 1336828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of feline caudal hypothalamic cardiorespiratory neurons to hypoxia and hypercapnia.
    Dillon GH; Waldrop TG
    Exp Brain Res; 1993; 96(2):260-72. PubMed ID: 8270021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia sensitive neurons in the caudal hypothalamus project to the periaqueductal gray.
    Ryan JW; Waldrop TG
    Respir Physiol; 1995 Jun; 100(3):185-94. PubMed ID: 7481107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the respiratory responses to hypoxia and hypercapnia by synaptic input onto caudal hypothalamic neurons.
    Horn EM; Waldrop TG
    Brain Res; 1994 Nov; 664(1-2):25-33. PubMed ID: 7895038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental aspects and mechanisms of rat caudal hypothalamic neuronal responses to hypoxia.
    Horn EM; Dillon GH; Fan YP; Waldrop TG
    J Neurophysiol; 1999 Apr; 81(4):1949-59. PubMed ID: 10200229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-sensing neurons in the caudal hypothalamus and their role in cardiorespiratory control.
    Horn EM; Waldrop TG
    Respir Physiol; 1997 Nov; 110(2-3):219-28. PubMed ID: 9407614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo and in vitro responses of neurons in the ventrolateral medulla to hypoxia.
    Nolan PC; Waldrop TG
    Brain Res; 1993 Dec; 630(1-2):101-14. PubMed ID: 8118678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventrolateral medullary neurons show age-dependent depolarizations to hypoxia in vitro.
    Nolan PC; Waldrop TG
    Brain Res Dev Brain Res; 1996 Jan; 91(1):111-20. PubMed ID: 8821482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of hypoxia-induced Fos expression in rat caudal hypothalamic neurons.
    Horn EM; Kramer JM; Waldrop TG
    Neuroscience; 2000; 99(4):711-20. PubMed ID: 10974434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input.
    Dean JB; Bayliss DA; Erickson JT; Lawing WL; Millhorn DE
    Neuroscience; 1990; 36(1):207-16. PubMed ID: 2120613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro responses of neurons in the periaqueductal gray to hypoxia and hypercapnia.
    Kramer JM; Nolan PC; Waldrop TG
    Brain Res; 1999 Jul; 835(2):197-203. PubMed ID: 10415374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brainstem and hypothalamic areas involved in respiratory chemoreflexes: a Fos study in adult rats.
    Berquin P; Bodineau L; Gros F; Larnicol N
    Brain Res; 2000 Feb; 857(1-2):30-40. PubMed ID: 10700550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypercapnic and hypoxic responses require intact neural transmission from the pre-Bötzinger complex.
    Wu M; Haxhiu MA; Johnson SM
    Respir Physiol Neurobiol; 2005 Mar; 146(1):33-46. PubMed ID: 15733777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normobaric hyperoxia (95% O₂) stimulates CO₂-sensitive and CO₂-insensitive neurons in the caudal solitary complex of rat medullary tissue slices maintained in 40% O₂.
    Matott MP; Ciarlone GE; Putnam RW; Dean JB
    Neuroscience; 2014 Jun; 270():98-122. PubMed ID: 24704511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of bulbospinal rostral ventral lateral medulla neurons by hypoxia/hypercapnia but not medullary respiratory activity.
    Boychuk CR; Woerman AL; Mendelowitz D
    Hypertension; 2012 Dec; 60(6):1491-7. PubMed ID: 23108653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon dioxide and pH effects on temperature-sensitive and -insensitive hypothalamic neurons.
    Wright CL; Boulant JA
    J Appl Physiol (1985); 2007 Apr; 102(4):1357-66. PubMed ID: 17138840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute hypercapnic hyperoxia stimulates reactive species production in the caudal solitary complex of rat brain slices but does not induce oxidative stress.
    Ciarlone GE; Dean JB
    Am J Physiol Cell Physiol; 2016 Dec; 311(6):C1027-C1039. PubMed ID: 27733363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxic augmentation of fast-inactivating and persistent sodium currents in rat caudal hypothalamic neurons.
    Horn EM; Waldrop TG
    J Neurophysiol; 2000 Nov; 84(5):2572-81. PubMed ID: 11067999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ketamine antagonizes hypoxia-induced dopamine release in rat striatum.
    Wang Y; Chiou AL; Yang ST; Lin JC
    Brain Res; 1995 Sep; 693(1-2):233-45. PubMed ID: 8653414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats.
    Taylor NC; Li A; Nattie EE
    J Physiol; 2005 Jul; 566(Pt 2):543-57. PubMed ID: 15878953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.