These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1337012)

  • 1. Increased resting metabolic rate and lipid oxidation in exercise-trained individuals: evidence for a role of beta-adrenergic stimulation.
    Tremblay A; Coveney S; Després JP; Nadeau A; Prud'homme D
    Can J Physiol Pharmacol; 1992 Oct; 70(10):1342-7. PubMed ID: 1337012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of a fat loss supplement on resting metabolic rate and hemodynamic variables in resistance trained males: a randomized, double-blind, placebo-controlled, cross-over trial.
    Campbell BI; Colquhoun RJ; Zito G; Martinez N; Kendall K; Buchanan L; Lehn M; Johnson M; St Louis C; Smith Y; Cloer B
    J Int Soc Sports Nutr; 2016; 13():14. PubMed ID: 27042166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced metabolic rate during beta-adrenergic blockade in humans.
    Welle S; Schwartz RG; Statt M
    Metabolism; 1991 Jun; 40(6):619-22. PubMed ID: 1650879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of hemodynamic, humoral and metabolic responses to beta 1- and beta 2-adrenergic stimulation in man using atenolol and propranolol.
    McLeod AA; Brown JE; Kuhn C; Kitchell BB; Sedor FA; Williams RS; Shand DG
    Circulation; 1983 May; 67(5):1076-84. PubMed ID: 6299612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-adrenergic and atrial natriuretic peptide interactions on human cardiovascular and metabolic regulation.
    Birkenfeld AL; Boschmann M; Moro C; Adams F; Heusser K; Tank J; Diedrich A; Schroeder C; Franke G; Berlan M; Luft FC; Lafontan M; Jordan J
    J Clin Endocrinol Metab; 2006 Dec; 91(12):5069-75. PubMed ID: 16984990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for tonic sympathetic support of resting metabolic rate in healthy adult humans.
    Monroe MB; Seals DR; Shapiro LF; Bell C; Johnson D; Parker Jones P
    Am J Physiol Endocrinol Metab; 2001 May; 280(5):E740-4. PubMed ID: 11287356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of beta-adrenergic receptor stimulation and blockade on substrate metabolism during submaximal exercise.
    Mora-Rodriguez R; Hodgkinson BJ; Byerley LO; Coyle EF
    Am J Physiol Endocrinol Metab; 2001 May; 280(5):E752-60. PubMed ID: 11287358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for β-adrenergic modulation of sweating during incremental exercise in habitually trained males.
    Amano T; Shitara Y; Fujii N; Inoue Y; Kondo N
    J Appl Physiol (1985); 2017 Jul; 123(1):182-189. PubMed ID: 28473612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in myocardial metabolism and transcardiac electrolytes during simulated ventricular tachycardia: effects of beta-adrenergic blockade.
    Peuhkurinen KJ; Huikuri HV; Linnaluoto M; Takkunen JT
    Am Heart J; 1994 Jul; 128(1):96-105. PubMed ID: 8017290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-1 vs. beta-2 adrenergic control of coronary blood flow during isometric handgrip exercise in humans.
    Maman SR; Vargas AF; Ahmad TA; Miller AJ; Gao Z; Leuenberger UA; Proctor DN; Muller MD
    J Appl Physiol (1985); 2017 Aug; 123(2):337-343. PubMed ID: 28572492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of beta-adrenergic blockade on circulating catecholamines and dopamine-beta-hydroxylase activity during exercise in normal subjects.
    Sheehan MW; Brammell HL; Sable DL; Nies AS; Horwitz LD
    Am Heart J; 1983 May; 105(5):777-82. PubMed ID: 6303097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The beta-adrenergic antagonist propranolol partly abolishes thermogenic response to bioactive food ingredients.
    Belza A; Gille MB; Schultz John S; Kondrup J
    Metabolism; 2009 Aug; 58(8):1137-44. PubMed ID: 19497591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans.
    Moro C; Crampes F; Sengenes C; De Glisezinski I; Galitzky J; Thalamas C; Lafontan M; Berlan M
    FASEB J; 2004 May; 18(7):908-10. PubMed ID: 15033935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of propranolol on free fatty acid mobilization and resting metabolic rate.
    Christin L; Ravussin E; Bogardus C; Howard BV
    Metabolism; 1989 May; 38(5):439-44. PubMed ID: 2725282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High energy flux mediates the tonically augmented beta-adrenergic support of resting metabolic rate in habitually exercising older adults.
    Bell C; Day DS; Jones PP; Christou DD; Petitt DS; Osterberg K; Melby CL; Seals DR
    J Clin Endocrinol Metab; 2004 Jul; 89(7):3573-8. PubMed ID: 15240648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propranolol fails to lower the increased blood pressure caused by cold air exposure.
    Reed HL; Kowalski KR; D'Alesandro MM; Robertson R; Lewis SB
    Aviat Space Environ Med; 1991 Feb; 62(2):111-5. PubMed ID: 1848072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher glycemic thresholds for symptoms during beta-adrenergic blockade in IDDM.
    Hirsch IB; Boyle PJ; Craft S; Cryer PE
    Diabetes; 1991 Sep; 40(9):1177-86. PubMed ID: 1657673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative effects of ivabradine, a selective heart rate-lowering agent, and propranolol on systemic and cardiac haemodynamics at rest and during exercise.
    Joannides R; Moore N; Iacob M; Compagnon P; Lerebours G; Menard JF; Thuillez C
    Br J Clin Pharmacol; 2006 Feb; 61(2):127-37. PubMed ID: 16433867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of aerobic conditioning on cardiovascular response to isometric exercise.
    Morgan BJ; Brammell HL; Sable DL; Morton ML; Horwitz LD
    J Appl Physiol Respir Environ Exerc Physiol; 1982 May; 52(5):1257-60. PubMed ID: 6284687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels.
    Chilian WM; Harrison DG; Haws CW; Snyder WD; Marcus ML
    Circ Res; 1986 Jan; 58(1):68-82. PubMed ID: 3002658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.