BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1337097)

  • 1. Driving forces and pathways for H+ and K+ transport in insect midgut goblet cells.
    Moffett DF; Koch A
    J Exp Biol; 1992 Nov; 172():403-15. PubMed ID: 1337097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiology of K+ transport by midgut epithelium of lepidopteran insect larvae. III. Goblet valve patency.
    Moffett D; Koch A; Woods R
    J Exp Biol; 1995; 198(Pt 10):2103-13. PubMed ID: 9320016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiology of K+ transport by midgut epithelium of lepidopteran insect larvae. IV. A multicompartment model accounts for tetramethylammonium entry into goblet cavities.
    Koch A; Moffett D
    J Exp Biol; 1995; 198(Pt 10):2115-25. PubMed ID: 9320027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect midgut K(+) secretion: concerted run-down of apical/basolateral transporters with extra-/intracellular acidity.
    Zeiske W; Meyer H; Wieczorek H
    J Exp Biol; 2002 Feb; 205(Pt 4):463-74. PubMed ID: 11893760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH GRADIENTS IN LEPIDOPTERAN MIDGUT.
    Dow JA
    J Exp Biol; 1992 Nov; 172(Pt 1):355-375. PubMed ID: 9874748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray microanalysis of elements in frozen-hydrated sections of an electrogenic K+ transport system: the posterior midgut of tobacco hornworm (Manduca sexta) in vivo and in vitro.
    Dow JA; Gupta BL; Hall TA; Harvey WR
    J Membr Biol; 1984; 77(3):223-41. PubMed ID: 6699905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of midgut electrogenic K+ pump potential difference in regulating lumen K+ and pH in larval lepidoptera.
    Dow JA; Harvey WR
    J Exp Biol; 1988 Nov; 140():455-63. PubMed ID: 2849625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron probe X-ray microanalysis of the effects of Bacillus thuringiensis var kurstaki crystal protein insecticide on ions in an electrogenic K+-transporting epithelium of the larval midgut in the lepidopteran, Manduca sexta, in vitro.
    Gupta BL; Dow JA; Hall TA; Harvey WR
    J Cell Sci; 1985 Mar; 74():137-52. PubMed ID: 2411741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut.
    Wieczorek H; Weerth S; Schindlbeck M; Klein U
    J Biol Chem; 1989 Jul; 264(19):11143-8. PubMed ID: 2472389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. K+ pump: from caterpillar midgut to human cochlea.
    Harvey WR; Xiang MA
    J Insect Physiol; 2012 Apr; 58(4):590-8. PubMed ID: 22410306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The morphology and fine structure of the larval midgut of a moth (Manduca sexta) in relation to active ion transport.
    Cioffi M
    Tissue Cell; 1979; 11(3):467-79. PubMed ID: 494237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: molecular analysis of electrogenic potassium transport in the tobacco hornworm midgut.
    Wieczorek H
    J Exp Biol; 1992 Nov; 172():335-43. PubMed ID: 1491230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane.
    Wieczorek H; Putzenlechner M; Zeiske W; Klein U
    J Biol Chem; 1991 Aug; 266(23):15340-7. PubMed ID: 1831202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Goblet cell membrane differentiations in the midgut of a lepidopteran larva.
    Flower NE; Filshie BK
    J Cell Sci; 1976 Mar; 20(2):357-75. PubMed ID: 1262411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological evidence for the presence of an apical H(+)-ATPase in Malpighian tubules of Formica polyctena: intracellular and luminal pH measurements.
    Zhang SL; Leyssens A; Van Kerkhove E; Weltens R; Van Driessche W; Steels P
    Pflugers Arch; 1994 Feb; 426(3-4):288-95. PubMed ID: 8183639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremely high pH in biological systems: a model for carbonate transport.
    Dow JA
    Am J Physiol; 1984 Apr; 246(4 Pt 2):R633-6. PubMed ID: 6144275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium ion transport ATPase in insect epithelia.
    Harvey WR; Cioffi M; Dow JA; Wolfersberger MG
    J Exp Biol; 1983 Sep; 106():91-117. PubMed ID: 6317792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship of mucoid substances and ion and water transport, with new data on intestinal goblet cells and a model for gastric secretion.
    Gupta BL
    Symp Soc Exp Biol; 1989; 43():81-110. PubMed ID: 2701492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of K+:Cl- cotransport and Na+/K+-ATPase to basolateral ion transport in malpighian tubules of Drosophila melanogaster.
    Linton SM; O'Donnell MJ
    J Exp Biol; 1999 Jun; 202(Pt 11):1561-70. PubMed ID: 10229702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.