These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1337214)

  • 1. Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Photochem Photobiol; 1992 Dec; 56(6):1135-44. PubMed ID: 1337214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Biochemistry; 1993 Dec; 32(50):13861-72. PubMed ID: 8268161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes in the lumirhodopsin-to-metarhodopsin I conversion of air-dried bovine rhodopsin.
    Nishimura S; Sasaki J; Kandori H; Lugtenburg J; Maeda A
    Biochemistry; 1995 Dec; 34(51):16758-63. PubMed ID: 8527450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy.
    Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T
    Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
    Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ
    J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bleaching kinetics of artificial visual pigments with modifications near the ring-polyene chain connection.
    Szundi I; de Lera AR; Pazos Y; Alvarez R; Oliana M; Sheves M; Lewis JW; Kliger DS
    Biochemistry; 2002 Feb; 41(6):2028-35. PubMed ID: 11827550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants.
    Lewis JW; Szundi I; Kazmi MA; Sakmar TP; Kliger DS
    Biochemistry; 2004 Oct; 43(39):12614-21. PubMed ID: 15449951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magic angle spinning NMR studies on the metarhodopsin II intermediate of bovine rhodopsin: evidence for an unprotonated Schiff base.
    Smith SO; de Groot H; Gebhard R; Lugtenburg J
    Photochem Photobiol; 1992 Dec; 56(6):1035-9. PubMed ID: 1337211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G protein.
    Longstaff C; Calhoon RD; Rando RR
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4209-13. PubMed ID: 3012559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison between the Photoactivation Kinetics of Human and Bovine Rhodopsins.
    Funatogawa C; Szundi I; Kliger DS
    Biochemistry; 2016 Dec; 55(50):7005-7013. PubMed ID: 27935291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoregeneration of bovine rhodopsin from its signaling state.
    Arnis S; Hofmann KP
    Biochemistry; 1995 Jul; 34(29):9333-40. PubMed ID: 7626602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH dependence of photolysis intermediates in the photoactivation of rhodopsin mutant E113Q.
    Lewis JW; Szundi I; Fu WY; Sakmar TP; Kliger DS
    Biochemistry; 2000 Jan; 39(3):599-606. PubMed ID: 10642185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deactivation and proton transfer in light-induced metarhodopsin II/metarhodopsin III conversion: a time-resolved fourier transform infrared spectroscopic study.
    Ritter E; Elgeti M; Hofmann KP; Bartl FJ
    J Biol Chem; 2007 Apr; 282(14):10720-30. PubMed ID: 17287211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metarhodopsin III formation and decay kinetics: comparison of bovine and human rhodopsin.
    Lewis JW; van Kuijk FJ; Carruthers JA; Kliger DS
    Vision Res; 1997 Jan; 37(1):1-8. PubMed ID: 9068826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural models of the photointermediates in the rhodopsin photocascade, lumirhodopsin, metarhodopsin I, and metarhodopsin II.
    Ishiguro M; Oyama Y; Hirano T
    Chembiochem; 2004 Mar; 5(3):298-310. PubMed ID: 14997522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin.
    Jäger F; Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 1994 Sep; 33(36):10878-82. PubMed ID: 7916209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pH on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II.
    Jäger S; Szundi I; Lewis JW; Mah TL; Kliger DS
    Biochemistry; 1998 May; 37(19):6998-7005. PubMed ID: 9578587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state.
    Arnis S; Hofmann KP
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7849-53. PubMed ID: 8356093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photolysis intermediates of human rhodopsin.
    Lewis JW; van Kuijk FJ; Thorgeirsson TE; Kliger DS
    Biochemistry; 1991 Dec; 30(48):11372-6. PubMed ID: 1742277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of early photolysis intermediates of rhodopsin are affected by glycine 121 and phenylalanine 261.
    Jäger S; Han M; Lewis JW; Szundi I; Sakmar TP; Kliger DS
    Biochemistry; 1997 Sep; 36(39):11804-10. PubMed ID: 9305971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.