These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 133727)

  • 1. Ca2+ activation of membrane-bound (Ca2++Mg2+)-dependent ATPase from human erythrocytes prepared in the presence or absence of Ca2+.
    Scharff O
    Biochim Biophys Acta; 1976 Aug; 443(2):206-18. PubMed ID: 133727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of (Mg2 + Ca2+)-ATPase of erythrocyte membranes prepared by different procedures: influence of Mg2+, Ca2+, ATP, and protein activator.
    Katz S; Roufogalis BD; Landman AD; Ho L
    J Supramol Struct; 1979; 10(2):215-25. PubMed ID: 156819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on an activator of the (Ca2+ plus Mg2+)-ATPase of human erythrocyte membranes.
    Luthra MG; Hildenbrandt GR; Hanahan DJ
    Biochim Biophys Acta; 1976 Jan; 419(1):164-79. PubMed ID: 1098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of (Ca2+ + Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. I. General properties of variously prepared membranes and the mechanism of the isosmotic imidazole effect.
    Farrance ML; Vincenzi FF
    Biochim Biophys Acta; 1977 Nov; 471(1):49-58. PubMed ID: 144528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of (Ca2+ + Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. II. Dependence on calcium and a cytoplasmic activator.
    Farrance ML; Vincenzi FF
    Biochim Biophys Acta; 1977 Nov; 471(1):59-66. PubMed ID: 144529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of EGTA on the apparent Ca2+ affinity of Mg2+-dependent, Ca2+-stimulated ATPase in the human erythrocyte membrane.
    Al-Jobore A; Roufogalis BD
    Biochim Biophys Acta; 1981 Jul; 645(1):1-9. PubMed ID: 6455157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two classes of site for ATP in the Ca2+-ATPase from human red cell membranes.
    Richards DE; Rega AF; Garrahan PJ
    Biochim Biophys Acta; 1978 Aug; 511(2):194-201. PubMed ID: 150288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of calcium and soluble cytoplasmic activator protein (calmodulin) on various states of (Ca2+ + Mg2+)-ATPase activity in isolated membranes of human red cells.
    Luthra MG; Kim HD
    Biochim Biophys Acta; 1980 Aug; 600(2):467-79. PubMed ID: 6105882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the isolated high-affinity (Ca2+ + Mg2+) ATPase of the human erythrocyte membrane.
    Lichtner R; Wolf HU
    Biochim Biophys Acta; 1980 Jun; 598(3):472-85. PubMed ID: 6104510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observations on the (Ca2+ plus Mg2+)-ATPase activator found in various mammalian erythrocytes.
    Luthra MG; Hildenbrandt GR; Kim HD; Hanahan DJ
    Biochim Biophys Acta; 1976 Jan; 419(1):180-6. PubMed ID: 128381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased (Ca2+ + Mg2+)-stimulated ATPase activity in erythrocyte membranes from polycythemia vera patients.
    Scharff O; Foder B
    Scand J Clin Lab Invest; 1975 Oct; 35(6):583-9. PubMed ID: 128120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (Ca2++Mg2+)-ATPase activity of sickle cell membranes: decreased activation by red blood cell cytoplasmic activator.
    Gopinath RM; Vincenzi FF
    Am J Hematol; 1979; 7(4):303-12. PubMed ID: 161856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible shift between two states of Ca2+-ATPase in human erythrocytes mediated by Ca2+ and a membrane-bound activator.
    Scharff O; Foder B
    Biochim Biophys Acta; 1978 May; 509(1):67-77. PubMed ID: 148293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characteristics of Ca2+ ion effect on the activity of Mg2+-dependent ATPase system in ghosts and reconstituted erythrocytes].
    Shevchenko AS; Orlov SN
    Biokhimiia; 1977 May; 42(5):906-10. PubMed ID: 142524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium binding and ATPase activities of heart sarcolemma.
    Dhalla NS; Anand MB; Harrow JA
    J Biochem; 1976 Jun; 79(6):1345-50. PubMed ID: 134031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP utilizing reactions of human erythrocyte membranes and the influence of modulator proteins.
    Maretzki D; Klatt D; Reimann B; Rapoport S
    Acta Biol Med Ger; 1981; 40(4-5):479-86. PubMed ID: 6118991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ATPase activity of saponin-treated rat erythrocytes: regulation by monovalent cations, calcium, ouabain, and furosemide.
    Petrunyaka VV; Panyushkina EA; Severina EP; Orlov SN
    Biochim Biophys Acta; 1990 Dec; 1030(2):279-88. PubMed ID: 2175654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of magnesium in the (Ca2+ + Mg2+)-stimulated membrane ATPase of human red blood cells.
    Schatzmann HJ
    J Membr Biol; 1977 Jun; 35(2):149-58. PubMed ID: 142160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium and magnesium ATPases of the spectrin fraction of human erythrocytes.
    Kirkpatrick FH; Woods GM; La Celle PL; Weed RI
    J Supramol Struct; 1975; 3(5-6):415-25. PubMed ID: 128659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.