These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1337516)

  • 1. Calcium calmodulin dependent kinase II in cat visual cortex and its development.
    Jia WG; Beaulieu C; Liu YL; Cynader M
    Dev Neurosci; 1992; 14(3):238-46. PubMed ID: 1337516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and morphological changes in the cat lateral geniculate nucleus and visual cortex induced by visual deprivation are revealed by monoclonal antibodies Cat-304 and Cat-301.
    GuimarĂ£es A; Zaremba S; Hockfield S
    J Neurosci; 1990 Sep; 10(9):3014-24. PubMed ID: 1697900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase C immunoreactivity in kitten visual cortex is developmentally regulated and input-dependent.
    Jia WG; Beaulieu C; Huang FL; Cynader MS
    Brain Res Dev Brain Res; 1990 Dec; 57(2):209-21. PubMed ID: 2073720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and regulation of beta adrenergic receptors in kitten visual cortex: an immunocytochemical and autoradiographic study.
    Liu Y; Jia W; Strosberg AD; Cynader M
    Brain Res; 1993 Dec; 632(1-2):274-86. PubMed ID: 8149233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunoreactivity for a calmodulin-dependent protein kinase is selectively increased in macaque striate cortex after monocular deprivation.
    Hendry SH; Kennedy MB
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1536-40. PubMed ID: 3006055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre- and post-critical period induced reduction of Cat-301 immunoreactivity in the lateral geniculate nucleus and visual cortex of cats Y-blocked as adults or made strabismic as kittens.
    Yin ZQ; Crewther SG; Wang C; Crewther DP
    Mol Vis; 2006 Aug; 12():858-66. PubMed ID: 16917486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early postnatal development of cholecystokinin-immunoreactive structures in the visual cortex of the cat.
    Meyer G; Wahle P
    J Comp Neurol; 1988 Oct; 276(3):360-86. PubMed ID: 3192767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early postnatal development of vasoactive intestinal polypeptide- and peptide histidine isoleucine-immunoreactive structures in the cat visual cortex.
    Wahle P; Meyer G
    J Comp Neurol; 1989 Apr; 282(2):215-48. PubMed ID: 2708596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of substance P and somatostatin in Martinotti cells of the developing cat visual cortex.
    Wahle P
    J Comp Neurol; 1993 Mar; 329(4):519-38. PubMed ID: 7681071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and subcellular localization of protein kinase C in cat visual cortex.
    Jia WG; Beaulieu C; Huang FL; Cynader MS
    Brain Res Mol Brain Res; 1990 Oct; 8(4):311-7. PubMed ID: 2176708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of the choline acetyltransferase-immunoreactive axonal network in the cat primary visual cortex: II. Pre- and postnatal development.
    Stichel CC; Singer W
    J Comp Neurol; 1987 Apr; 258(1):99-111. PubMed ID: 3553246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of proteins downregulated during the postnatal development of the cat visual cortex.
    Kind P; Blakemore C; Fryer H; Hockfield S
    Cereb Cortex; 1994; 4(4):361-75. PubMed ID: 7950309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical localization of calcineurin in the adult and developing primary visual cortex of cats.
    Goto S; Singer W; Gu Q
    Exp Brain Res; 1993; 96(3):377-86. PubMed ID: 8299742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase gene expression in the adult monkey visual cortex.
    Benson DL; Isackson PJ; Gall CM; Jones EG
    J Neurosci; 1991 Jan; 11(1):31-47. PubMed ID: 1846011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neocortex and hippocampus contain distinct distributions of calcium-calmodulin protein kinase II and GAP43 mRNA.
    Jacobs KM; Neve RL; Donoghue JP
    J Comp Neurol; 1993 Oct; 336(1):151-60. PubMed ID: 8254111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal development and laminar distribution of noradrenergic fibers in cat visual cortex.
    Liu Y; Cynader M
    Brain Res Dev Brain Res; 1994 Oct; 82(1-2):90-4. PubMed ID: 7842524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of the AMPA2 glutamate receptor subunit in adult cat visual cortex.
    Van Damme K; Massie A; Vandesande F; Arckens L
    Brain Res; 2003 Jan; 960(1-2):1-8. PubMed ID: 12505651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal development of immunohistochemically localized spectrin-like protein (calspectin or fodrin) in the rat visual cortex: its excessive expression in developing cortical neurons.
    Kimura F; Tsumoto T; Sobue K
    J Neurocytol; 1987 Oct; 16(5):649-65. PubMed ID: 3694236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of cholinergic synaptic terminals on GABAergic neurons and coexistence of immunoreactive GABA and choline acetyltransferase in the same synaptic terminals in the striate cortex of the cat.
    Beaulieu C; Somogyi P
    J Comp Neurol; 1991 Feb; 304(4):666-80. PubMed ID: 2013651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of geniculocortical projections to visual cortex in rat: evidence early ingrowth and synaptogenesis.
    Kageyama GH; Robertson RT
    J Comp Neurol; 1993 Sep; 335(1):123-48. PubMed ID: 7691903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.