These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 1337535)
1. Hydroxyl radical generation in the NADH/microsomal reduction of vanadate. Shi X; Dalal NS Free Radic Res Commun; 1992; 17(6):369-76. PubMed ID: 1337535 [TBL] [Abstract][Full Text] [Related]
2. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969 [TBL] [Abstract][Full Text] [Related]
3. Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH. Keller RJ; Coulombe RA; Sharma RP; Grover TA; Piette LH Free Radic Biol Med; 1989; 6(1):15-22. PubMed ID: 2536340 [TBL] [Abstract][Full Text] [Related]
4. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968 [TBL] [Abstract][Full Text] [Related]
5. Characterization of oxygen free radicals generated during vanadate-stimulated NADH oxidation. Kalyani P; Vijaya S; Ramasarma T Mol Cell Biochem; 1992 Apr; 111(1-2):33-40. PubMed ID: 1317004 [TBL] [Abstract][Full Text] [Related]
6. Superoxide-independent reduction of vanadate by rat liver microsomes/NAD(P)H: vanadate reductase activity. Shi X; Dalal NS Arch Biochem Biophys; 1992 May; 295(1):70-5. PubMed ID: 1315507 [TBL] [Abstract][Full Text] [Related]
7. Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber-Weiss vs Fenton mechanism. Shi X; Dalal NS Arch Biochem Biophys; 1993 Dec; 307(2):336-41. PubMed ID: 8274019 [TBL] [Abstract][Full Text] [Related]
8. Vanadate-induced activation of activator protein-1: role of reactive oxygen species. Ding M; Li JJ; Leonard SS; Ye JP; Shi X; Colburn NH; Castranova V; Vallyathan V Carcinogenesis; 1999 Apr; 20(4):663-8. PubMed ID: 10223197 [TBL] [Abstract][Full Text] [Related]
9. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates. Kukiełka E; Cederbaum AI Arch Biochem Biophys; 1989 Dec; 275(2):540-50. PubMed ID: 2556968 [TBL] [Abstract][Full Text] [Related]
10. Stimulation of microsomal production of reactive oxygen intermediates by rifamycin SV: effect of ferric complexes and comparisons between NADPH and NADH. Kukiełka E; Cederbaum AI Arch Biochem Biophys; 1992 Nov; 298(2):602-11. PubMed ID: 1329662 [TBL] [Abstract][Full Text] [Related]
11. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Dicker E; Cederbaum AI Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215 [TBL] [Abstract][Full Text] [Related]
12. Hydroxyl radicals is not a significant intermediate in the vanadate-stimulated oxidation of NAD(P)H by O2. Liochev SI; Fridovich I Arch Biochem Biophys; 1989 Nov; 275(1):40-3. PubMed ID: 2554810 [TBL] [Abstract][Full Text] [Related]
13. Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. Mao GD; Thomas PD; Lopaschuk GD; Poznansky MJ J Biol Chem; 1993 Jan; 268(1):416-20. PubMed ID: 8380162 [TBL] [Abstract][Full Text] [Related]
14. Vanadate-stimulated NADH oxidation in microsomes. Rau M; Patole MS; Vijaya S; Kurup CK; Ramasarma T Mol Cell Biochem; 1987 Jun; 75(2):151-9. PubMed ID: 3650694 [TBL] [Abstract][Full Text] [Related]
15. A novel phenomenon of burst of oxygen uptake during decavanadate-dependent oxidation of NADH. Kalyani P; Ramasarma T Mol Cell Biochem; 1993 Apr; 121(1):21-9. PubMed ID: 8510671 [TBL] [Abstract][Full Text] [Related]
16. Hydroxyl radical formation as a result of the interaction between primaquine and reduced pyridine nucleotides. Catalysis by hemoglobin and microsomes. Augusto O; Weingrill CL; Schreier S; Amemiya H Arch Biochem Biophys; 1986 Jan; 244(1):147-55. PubMed ID: 3004336 [TBL] [Abstract][Full Text] [Related]
17. The oxidation of NADH by tetravalent vanadium. Liochev S; Fridovich I Arch Biochem Biophys; 1987 Jun; 255(2):274-8. PubMed ID: 3036003 [TBL] [Abstract][Full Text] [Related]
18. Generation of reactive oxygen species and reduction of ferric chelates by microsomes in the presence of a reconstituted system containing ethanol, NAD+ and alcohol dehydrogenase. Dicker E; Cederbaum AI Alcohol Clin Exp Res; 1990 Apr; 14(2):238-44. PubMed ID: 2161619 [TBL] [Abstract][Full Text] [Related]
19. Spin trapping of free radical species produced during the microsomal metabolism of ethanol. Albano E; Tomasi A; Goria-Gatti L; Dianzani MU Chem Biol Interact; 1988; 65(3):223-34. PubMed ID: 2837334 [TBL] [Abstract][Full Text] [Related]
20. Hydroxyl radicals are generated by hepatic microsomes during NADPH oxidation: relationship to ethanol metabolism. McCay PB; Reinke LA; Rau JM Free Radic Res Commun; 1992; 15(6):335-46. PubMed ID: 1314760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]