These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1337657)

  • 1. Biologically active cyanine dyes as probes for the identification of active oxygen species.
    Hori H; Nakagawa Y; Ojima H; Niijima T; Terada H
    Adv Exp Med Biol; 1992; 317():255-60. PubMed ID: 1337657
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of xanthine/xanthine oxidase generated reactive oxygen species on synaptic transmission.
    Colton C; Yao J; Grossman Y; Gilbert D
    Free Radic Res Commun; 1991; 14(5-6):385-93. PubMed ID: 1663906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl radical is not a product of the reaction of xanthine oxidase and xanthine. The confounding problem of adventitious iron bound to xanthine oxidase.
    Britigan BE; Pou S; Rosen GM; Lilleg DM; Buettner GR
    J Biol Chem; 1990 Oct; 265(29):17533-8. PubMed ID: 2170383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristic bleaching profiles of cyanine dyes depending on active oxygen species in the controlled Fenton reaction.
    Nakagawa Y; Hori H; Yamamoto I; Terada H
    Biol Pharm Bull; 1993 Nov; 16(11):1061-4. PubMed ID: 8312855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin.
    Bannister JV; Bannister WH; Hill HA; Thornalley PJ
    Biochim Biophys Acta; 1982 Mar; 715(1):116-20. PubMed ID: 6280774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Participation of iron in OH-radical formation in a system generating a superoxide anion-radical].
    Osipov AN; Savov VM; Zubarev VE; Azizova OA; Vladimirov IuA
    Biofizika; 1981; 26(2):193-7. PubMed ID: 6266504
    [No Abstract]   [Full Text] [Related]  

  • 7. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system.
    Halliwell B
    FEBS Lett; 1978 Dec; 96(2):238-42. PubMed ID: 215454
    [No Abstract]   [Full Text] [Related]  

  • 8. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems?
    Halliwell B
    FEBS Lett; 1978 Aug; 92(2):321-6. PubMed ID: 212302
    [No Abstract]   [Full Text] [Related]  

  • 9. Quantitative identification of superoxide anion as a negative inotropic species.
    Schrier GM; Hess ML
    Am J Physiol; 1988 Jul; 255(1 Pt 2):H138-43. PubMed ID: 2839994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemistry of dioxygen.
    Green MJ; Hill HA
    Methods Enzymol; 1984; 105():3-22. PubMed ID: 6328186
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of roxithromycin on the generation of reactive oxygen species in vitro.
    Akamatsu H; Nishijima S; Akamatsu M; Kurokawa I; Sasaki H; Asada Y
    J Int Med Res; 1996; 24(1):27-32. PubMed ID: 8674797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new technique for enhancing luminol luminescent detection of free radicals and reactive oxygen species.
    Trevithick JR; Dzialoszynski T
    Biochem Mol Biol Int; 1994 Aug; 33(6):1179-90. PubMed ID: 7804144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chemiluminescent method for measurement of activated oxygen forms in biological fluids and homogenates.
    Ribarov SR; Bochev PG
    J Biochem Biophys Methods; 1983 Nov; 8(3):205-12. PubMed ID: 6317733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased hydroxyl radical generation from polymorphonuclear leucocytes in the presence of D-penicillamine and thiopronine.
    Miyachi Y; Yoshioka A; Imamura S; Niwa Y
    J Clin Lab Immunol; 1987 Feb; 22(2):81-4. PubMed ID: 3037083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant properties of aminosalicylates.
    Miles AM; Grisham MB
    Methods Enzymol; 1994; 234():555-72. PubMed ID: 7808332
    [No Abstract]   [Full Text] [Related]  

  • 17. The chemistry of free radicals.
    Halliwell B
    Toxicol Ind Health; 1993; 9(1-2):1-21. PubMed ID: 8380303
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of active oxygen species on damage to and prostaglandin synthesis in cultured rat gastric cells.
    Sakuma H; Arakawa T; Kobayashi K
    Osaka City Med J; 1992 Jun; 38(1):45-65. PubMed ID: 1326736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free radical stimulation of tyrosine kinase and phosphatase activity in human peripheral blood mononuclear cells.
    Lowe GM; Hulley CE; Rhodes ES; Young AJ; Bilton RF
    Biochem Biophys Res Commun; 1998 Apr; 245(1):17-22. PubMed ID: 9535775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-oxidant effects of retinoids on inflammatory skin diseases.
    Yoshioka A; Miyachi Y; Imamura S; Niwa Y
    Arch Dermatol Res; 1986; 278(3):177-83. PubMed ID: 3015048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.