BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1337996)

  • 1. Reactivity of orthoquinones involved in tyrosinase-dependent cytotoxicity: differences between alkylthio- and alkoxy-substituents.
    Cooksey CJ; Jimbow K; Land EJ; Riley PA
    Melanoma Res; 1992 Dec; 2(5-6):283-93. PubMed ID: 1337996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosinase-mediated cytotoxicity of 4-substituted phenols: quantitative structure-thiol-reactivity relationships of the derived o-quinones.
    Cooksey CJ; Land EJ; Ramsden CA; Riley PA
    Anticancer Drug Des; 1995 Mar; 10(2):119-29. PubMed ID: 7710634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melanogenesis-targeted anti-melanoma pro-drug development: effect of side-chain variations on the cytotoxicity of tyrosinase-generated ortho-quinones in a model screening system.
    Riley PA; Cooksey CJ; Johnson CI; Land EJ; Latter AM; Ramsden CA
    Eur J Cancer; 1997 Jan; 33(1):135-43. PubMed ID: 9071913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Reactivities of
    Ito S; Sugumaran M; Wakamatsu K
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32846902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells.
    Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM
    Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cell-based evaluation of human tyrosinase-mediated metabolic activation of leukoderma-inducing phenolic compounds.
    Nishimaki-Mogami T; Ito S; Cui H; Akiyama T; Tamehiro N; Adachi R; Wakamatsu K; Ikarashi Y; Kondo K
    J Dermatol Sci; 2022 Nov; 108(2):77-86. PubMed ID: 36567223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycyclic aromatic hydrocarbon (PAH) ortho-quinone conjugate chemistry: kinetics of thiol addition to PAH ortho-quinones and structures of thioether adducts of naphthalene-1,2-dione.
    Murty VS; Penning TM
    Chem Biol Interact; 1992 Sep; 84(2):169-88. PubMed ID: 1394622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosinase kinetics: failure of the auto-activation mechanism of monohydric phenol oxidation by rapid formation of a quinomethane intermediate.
    Cooksey CJ; Garratt PJ; Land EJ; Ramsden CA; Riley PA
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):685-91. PubMed ID: 9677329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase.
    Cooksey CJ; Garratt PJ; Land EJ; Pavel S; Ramsden CA; Riley PA; Smit NP
    J Biol Chem; 1997 Oct; 272(42):26226-35. PubMed ID: 9334191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radicals and melanomas.
    Riley PA
    Philos Trans R Soc Lond B Biol Sci; 1985 Dec; 311(1152):679-89. PubMed ID: 2869525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones.
    Fenoll LG; Rodríguez-López JN; García-Sevilla F; García-Ruiz PA; Varón R; García-Cánovas F; Tudela J
    Biochim Biophys Acta; 2001 Jul; 1548(1):1-22. PubMed ID: 11451433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulse radiolysis studies of ortho-quinone chemistry relevant to melanogenesis.
    Land EJ; Ramsden CA; Riley PA
    J Photochem Photobiol B; 2001 Nov; 64(2-3):123-35. PubMed ID: 11744399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction between ortho-semiquinones and oxygen: pulse radiolysis, electron spin resonance, and oxygen uptake studies.
    Kalyanaraman B; Korytowski W; Pilas B; Sarna T; Land EJ; Truscott TG
    Arch Biochem Biophys; 1988 Oct; 266(1):277-84. PubMed ID: 2845864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro assessment of the structure-activity relationship of tyrosinase-dependent cytotoxicity of a series of substituted phenols.
    Naish-Byfield S; Cooksey CJ; Latter AM; Johnson CI; Riley PA
    Melanoma Res; 1991; 1(4):273-87. PubMed ID: 1823634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies of catechol generation from secondary quinone amines relevant to indole formation and tyrosinase activation.
    Land EJ; Ramsden CA; Riley PA; Yoganathan G
    Pigment Cell Res; 2003 Aug; 16(4):397-406. PubMed ID: 12859624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation by mushroom tyrosinase of monophenols generating slightly unstable o-quinones.
    Fenoll LG; Rodríguez-López JN; García-Sevilla F; Tudela J; García-Ruiz PA; Varón R; García-Cánovas F
    Eur J Biochem; 2000 Oct; 267(19):5865-78. PubMed ID: 10998046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the reactions between human tyrosinase, superoxide anion, hydrogen peroxide and thiols.
    Wood JM; Schallreuter KU
    Biochim Biophys Acta; 1991 Aug; 1074(3):378-85. PubMed ID: 1653610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity.
    Ito S; Ojika M; Yamashita T; Wakamatsu K
    Pigment Cell Melanoma Res; 2014 Sep; 27(5):744-53. PubMed ID: 24903082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of reverse transcriptase by tyrosinase generated quinones related to levodopa and dopamine.
    Wick MM; Fitzgerald G
    Chem Biol Interact; 1981 Dec; 38(1):99-107. PubMed ID: 6173137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.