BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1338102)

  • 1. Effects of perchlorate on excitation-contraction coupling in frog and crayfish skeletal muscle.
    Györke S; Palade P
    J Physiol; 1992 Oct; 456():443-51. PubMed ID: 1338102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A surface potential change in the membranes of frog skeletal muscle is associated with excitation-contraction coupling.
    Jong DS; Stroffekova K; Heiny JA
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):787-808. PubMed ID: 9130173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How perchlorate improves excitation-contraction coupling in skeletal muscle fibers.
    Lüttgau HC; Gottschalk G; Kovács L; Fuxreiter M
    Biophys J; 1983 Aug; 43(2):247-9. PubMed ID: 6311303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perchlorate and the relationship between charge movement and contractile activation in frog skeletal muscle fibres.
    Csernoch L; Kovács L; Szücs G
    J Physiol; 1987 Sep; 390():213-27. PubMed ID: 2450990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of sarcoplasmic reticulum 'Ca2+ release channels' in excitation-contraction coupling in vertebrate skeletal muscle.
    Brunder DG; Györke S; Dettbarn C; Palade P
    J Physiol; 1992 Jan; 445():759-78. PubMed ID: 1380087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perchlorate enhances transmission in skeletal muscle excitation-contraction coupling.
    González A; Ríos E
    J Gen Physiol; 1993 Sep; 102(3):373-421. PubMed ID: 8245817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of perchlorate on the molecules of excitation-contraction coupling of skeletal and cardiac muscle.
    Ma J; Anderson K; Shirokov R; Levis R; González A; Karhanek M; Hosey MM; Meissner G; Ríos E
    J Gen Physiol; 1993 Sep; 102(3):423-48. PubMed ID: 8245818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of caffeine and perchlorate on excitation-contraction coupling in mammalian skeletal muscle.
    Csernoch L; Szentesi P; Kovács L
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):217-30. PubMed ID: 10517813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action of perchlorate on the voltage dependent inactivation of excitation-contraction coupling in frog skeletal muscle fibres.
    Píriz N; Pizarro G
    J Muscle Res Cell Motil; 2007; 28(6):315-28. PubMed ID: 18224449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anions that potentiate excitation-contraction coupling may mimic effect of phosphate on Ca2+ release channel.
    Fruen BR; Mickelson JR; Roghair TJ; Cheng HL; Louis CF
    Am J Physiol; 1994 Jun; 266(6 Pt 1):C1729-35. PubMed ID: 8023902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-induced calcium release in crayfish skeletal muscle.
    Györke S; Palade P
    J Physiol; 1992 Nov; 457():195-210. PubMed ID: 1338456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of perchlorate on depolarization-induced conformational changes in the junctional foot protein and Ca2+ release from sarcoplasmic reticulum.
    Yano M; el-Hayek R; Ikemoto N
    Biochemistry; 1995 Oct; 34(39):12584-9. PubMed ID: 7548007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge movement and SR calcium release in frog skeletal muscle can be related by a Hodgkin-Huxley model with four gating particles.
    Simon BJ; Hill DA
    Biophys J; 1992 May; 61(5):1109-16. PubMed ID: 1318090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres.
    Brum G; Ríos E; Stéfani E
    J Physiol; 1988 Apr; 398():441-73. PubMed ID: 2455801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cardiac glycosides on excitation-contraction coupling in frog skeletal muscle fibres.
    Sárközi S; Szentesi P; Jona I; Csernoch L
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):611-26. PubMed ID: 8887770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The action of perchlorate on malignant-hyperthermia-susceptible muscle.
    Anderson LC; Fruen BR; Jordan RC; Louis CF; Gallant EM
    Pflugers Arch; 1997 Dec; 435(1):91-8. PubMed ID: 9359907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclopiazonic acid and thapsigargin reduce Ca2+ influx in frog skeletal muscle fibres as a result of Ca2+ store depletion.
    Même W; Léoty C
    Acta Physiol Scand; 2001 Dec; 173(4):391-9. PubMed ID: 11903131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres.
    Baylor SM; Hollingworth S; Marshall MW
    J Physiol; 1989 Jan; 408():617-35. PubMed ID: 2476559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation-contraction coupling in intact frog skeletal muscle fibers injected with mmolar concentrations of fura-2.
    Hollingworth S; Harkins AB; Kurebayashi N; Konishi M; Baylor SM
    Biophys J; 1992 Jul; 63(1):224-34. PubMed ID: 1330027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.