These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1338104)

  • 1. ATP dependence of Na(+)-K+ pump of cold-sensitive and cold-tolerant mammalian red blood cells.
    Marjanovic M; Willis JS
    J Physiol; 1992 Oct; 456():575-90. PubMed ID: 1338104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevating intracellular free Mg2+ preserves sensitivity of Na(+)-K+ pump to ATP at reduced temperatures in guinea pig red blood cells.
    Marjanovic M; Willis JS
    J Comp Physiol B; 1995; 165(6):428-32. PubMed ID: 8576455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the sodium pump in red cells of different temperature sensitivity.
    Ellory JC; Willis JS
    J Gen Physiol; 1982 Jun; 79(6):1115-30. PubMed ID: 6286844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na-K pump and Na-K-ATPase: disparity of their temperature sensitivity.
    Willis JS; Ellory JC; Becker JH
    Am J Physiol; 1978 Nov; 235(5):C159-67. PubMed ID: 215034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature effects on sodium pump phosphoenzyme distribution in human red blood cells.
    Kaplan JH; Kenney LJ
    J Gen Physiol; 1985 Jan; 85(1):123-36. PubMed ID: 2578548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of temperature on three components of passive permeability to potassium in rodent red cells.
    Hall AC; Willis JS
    J Physiol; 1984 Mar; 348():629-43. PubMed ID: 6325676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of effect of temperature on phosphorus metabolites, pH and Mg2+ in human and ground squirrel red cells.
    Marjanovic M; Gregory C; Ghosh P; Willis JS; Dawson MJ
    J Physiol; 1993 Oct; 470():559-74. PubMed ID: 8308744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultured cells from renal cortex of hibernators and nonhibernators. Regulation of cell K+ at low temperature.
    Zeidler RB; Willis JS
    Biochim Biophys Acta; 1976 Jul; 436(3):628-51. PubMed ID: 986173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate from the phosphointermediate (EP) of the human red blood cell Na/K pump is coeffluxed with Na, in the absence of external K.
    Marín R; Hoffman JF
    J Gen Physiol; 1994 Jul; 104(1):1-32. PubMed ID: 7964591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance of cation gradients in cold-stored erythrocytes of guinea pig and ground squirrel: improvement by amiloride.
    Zhao ZH; Willis JS
    Cryobiology; 1989 Apr; 26(2):132-7. PubMed ID: 2539948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of cooling in hibernator and nonhibernator cells: Na permeation.
    Zhou ZQ; Willis JS
    Am J Physiol; 1989 Jan; 256(1 Pt 2):R49-55. PubMed ID: 2912225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.
    Kimzey SL; Willis JS
    J Gen Physiol; 1971 Dec; 58(6):634-49. PubMed ID: 5120391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of (Na+ + K+)-ATPase in binding and actions of palytoxin on human erythrocytes.
    Böttinger H; Béress L; Habermann E
    Biochim Biophys Acta; 1986 Sep; 861(1):165-76. PubMed ID: 2875735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of red cell and kidney (Na+ +K+)-ATPase at 0 degrees C.
    White B; Blostein R
    Biochim Biophys Acta; 1982 Jun; 688(3):685-90. PubMed ID: 6288089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal changes in cation transport in red blood cells of grey squirrel (Sciurus carolinensis) in relation to thermogenesis and cellular adaptation to cold.
    Willis JS; Zhao MJ
    Comp Biochem Physiol A Comp Physiol; 1991; 98(2):245-51. PubMed ID: 1673891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation fluxes and (Na+ + K+)-activated ATPase activity in erythrocytes of patients with essential hypertension.
    Swarts HG; Bonting SL; De Pont JJ; Schuurmans Stekhoven FM; Thien TA; Van't Laar A
    Clin Exp Hypertens (1978); 1981; 3(4):831-49. PubMed ID: 6271511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of glycolytic and oxidative metabolism blockers on the Na-K pump in erythrocytes of the frog, Rana temporaria.
    Agalakova NI; Lapin AV; Gusev GP
    J Comp Physiol B; 1997 Nov; 167(8):576-81. PubMed ID: 9404018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium ions, acting at high-affinity extracellular sites, inhibit sodium-ATPase activity of the sodium pump by slowing dephosphorylation.
    Beaugé LA; Glynn IM
    J Physiol; 1979 Apr; 289():17-31. PubMed ID: 222896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.